3.1.2 Стек
Стек можно реализовывать как статическую структуру данных в виде одномерного массива, а можно как динамическую структуру – в виде линейного списка.
При реализации стека в виде статического массива необходимо резервировать массив, длина которого равна максимально возможной глубине стека, что приводит к неэффективному использованию памяти. Одновременно, работать с такой реализацией проще и быстрее.
При такой реализации дно стека будет располагаться в первом элементе массива, а рост стека будет осуществляться в сторону увеличения индексов. Одновременно, необходимо отдельно хранить значение индекса элемента массива, являющегося вершиной стека.
Можно обойтись без отдельного хранения индекса, если в качестве вершины стека всегда использовать первый элемент массива, но в этом случае, при записи или чтении из стека, необходимо будет осуществлять сдвиг всех остальных элементов, что приводит к дополнительным затратам вычислительных ресурсов.
Стек как динамическую структуру данных легко организовать на основе линейного списка. Поскольку работа всегда идет с заголовком стека, то есть не требуется осуществлять просмотр элементов, удалению и вставку элементов в середину или конец списка, то достаточно использовать экономичный по памяти линейный однонаправленный список. Для такого списка достаточно хранить указатель вершины стека, который указывает на первый элемент списка. Если стек пуст, то списка не существует и указатель принимает значение nil.
Рисунок 3.6 – Стек и его организация
Поскольку стек, по своей сути, является структурой с изменяемым количеством элементов, то основное внимание уделим динамической реализации стека. Как уже говорилось выше, для такой реализации целесообразно использовать линейный однонаправленный список.
Описание элементов стека аналогично описанию элементов линейного однонаправленного списка, где DataType является типом элементов стека.
Основные операции, производимые со стеком:
записать (положить в стек);
прочитать (снять со стека);
очистить стек;
проверка пустоты стека.
Реализация этих операций приведена в виде соответствующих процедур, которые, в свою очередь, используют процедуры операций с линейным однонаправленным списком.
procedure PushStack(NewElem: TypeData;
var ptrStack: PElement);
{Запись элемента в стек (положить в стек)}
begin
InsFirst_LineSingleList(NewElem, ptrStack);
end;
procedure PopStack(var NewElem: TypeData,
ptrStack: PElement);
{Чтение элемента из стека (снять со стека)}
begin
if ptrStack <> nil then begin
NewElem := ptrStack^.Data;
Del_LineSingleList(ptrStack, ptrStack); {удаляем вершину}
end;
end;
procedure ClearStack(var ptrStack: PElement);
{Очистка стека}
begin
while ptrStack <> nil do
Del_LineSingleList(ptrStack, ptrStack); {удаляем вершину}
end;
function EmptyStack(var ptrStack: PElement): boolean;
{Проверка пустоты стека}
begin
if ptrStack = nil then EmptyStack := true
else EmptyStack := false;
end;
Листинг 3.16 – Реализация стека на базе линейного однонаправленного списка
Листинг 3.17 – Операции со стеком
- Министерство образования Российской Федерации
- Содержание
- 1.2 Скорость роста функций
- 1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- 1.4 Типы данных, структуры данных и абстрактные типы данных
- 1.5 Динамические множества
- 2 Алгоритмы сортировок
- 2.1 Понятие внутренней и внешней сортировки
- 2.2 Сортировка вставками
- 2.3 Сортировка слиянием
- 2.3.1 Описание алгоритма
- 2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- 2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- 2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- 2.4 Пирамидальная сортировка
- 2.4.1 Введение в алгоритм
- 2.4.2 Сохранение основного свойства кучи
- 2.4.3 Построение кучи
- 2.5 Быстрая сортировка
- 2.5.1 Введение в алгоритм
- 2.5.2 Описание
- 2.5.3 Разбиение массива
- 2.5.4 Особенности работы быстрой сортировки
- 2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- 2.6.1 Введение
- 2.6.2 Разрешающее дерево сортировки сравнениями
- 2.7 Цифровая сортировка
- 2.8 Сортировка вычерпыванием
- 2.8.1 Описание алгоритма
- 2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- 2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- 2.9 Сортировка подсчетом
- 2.9.1 Описание алгоритма
- 2.9.2 Анализ времени работы
- 3 Элементарные и нелинейные структуры данных
- 3.1 Элементарные структуры: список, стек, очередь, дек
- 3.1.1 Список Линейный однонаправленный список
- Линейный двунаправленный список
- Двунаправленный список с фиктивными элементами
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- 3.1.2 Стек
- 3.1.3 Очередь
- 3.1.3 Дек
- 3.2 Нелинейные структуры данных
- 3.2.1 Представление корневых деревьев в эвм
- Обходы деревьев
- 3.2.2 Двоичные деревья Спецификация двоичных деревьев
- Реализация
- Обходы двоичных деревьев
- 3.2.3 Двоичные деревья поиска Основные операции
- Минимум и максимум
- Следующий и предыдущий элементы
- Добавление и удаление
- Случайные деревья поиска
- Оптимальные деревья поиска
- 4 Хеширование
- 4.1 Введение
- 4.2 Прямая адресация; таблицы с прямой адресацией
- 4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- Разрешение коллизий с помощью цепочек
- Анализ хеширования с цепочками
- 4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- Ключи как натуральные числа
- Деление с остатком
- Умножение
- Универсальное хеширование
- 4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- Линейная последовательность проб
- 1 / (1 – )
- 5 Основные принципы разработки алгоритмов
- 5.1 Введение в теорию графов
- 5.1.1 Графы
- 5.1.2 Представление графов
- 5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- 5.2.1 Поиск в ширину (волновой алгоритм)
- 5.2.2 Анализ поиска в ширину
- 5.2.3 Деревья поиска в ширину
- 5.2.4 Поиск в глубину
- 5.2.5 Анализ поиска в глубину
- 5.2.6 Свойства поиска в глубину
- 5.2.7 Классификация рёбер
- 5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- 5.3.1 Топологическая сортировка
- 5.3.2 Сильно связные компоненты
- 5.4 Алгоритм построения минимального остовного дерева
- 5.4.1 Остовные деревья минимальной стоимости
- 5.4.2 Построение минимального покрывающего дерева
- 5.4.3 Алгоритмы Крускала и Пpимa
- 5.4.4 Алгоритм Крускала
- 5.4.5 Алгоритм Прима
- 5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- 5.5.1 Нахождение кратчайшего пути
- 5.5.2 Алгоритм Дейкстры
- 5.5.3 Алгоритм Флойда
- 5.6 Поиск с возвратом
- 5.6.1 Введение
- 5.6.2 Переборные алгоритмы
- 5.6.3 Метод ветвей и границ
- 5.6.4 Метод альфа-бета отсечения
- 5.6.5 Локальные и глобальные оптимальные решения
- 5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- 5.7.1 «Ханойские башни»
- 5.8 Жадные алгоритмы и динамическое программирование
- 5.8.1 Задача о выборе заявок
- 5.8.2 Дискретная задача о рюкзаке
- 5.8.3 Непрерывная задача о рюкзаке
- 5.8.4 Числа Фибоначчи
- 5.8.5 Задача триангуляции многоугольника
- 5.8.6 Дп, жадный алгоритм или что-то другое?