5.5.3 Алгоритм Флойда
Этот алгоритм решает задачу нахождения кратчайших путей между всеми парами вершин графа. Более строгая формулировка этой задачи следующая: есть ориентированный граф G = (V, Е), каждой дуге (v, w) этого графа сопоставлена неотрицательная стоимость C[v, w]. Общая задача нахождения кратчайших путей заключается в нахождении для каждой упорядоченной пары вершин (v, w) любого пути от вершины v в вершину w, длина которого минимальна среди всех возможных путей от v к w.
Можно решить эту задачу, последовательно применяя алгоритм Дейкстры для каждой вершины, объявляемой в качестве источника. Но существует прямой способ решения данной задачи, использующий алгоритм Флойда. Для определенности положим, что вершины графа последовательно пронумерованы от 1 до n. Алгоритм Флойда использует матрицу A размера nn, в которой вычисляются длины кратчайших путей. В начале A[i, j] = C[i, j] для всех i <> j. Если дуга (i, j) отсутствует, то C[i, j] = . Каждый диагональный элемент матрицы A равен 0.
Над матрицей A выполняется n итераций. После k-й итерации A[i, j] содержит значение наименьшей длины путей из вершины i в вершину j, которые не проходят через вершины с номером, большим k. Другими словами, между концевыми вершинами пути i и j могут находиться только вершины, номера которых меньше или равны k.
На k-й итерации для вычисления матрицы A применяется следующая формула: Аk[i, j] = min(Ak-1[i, j], Ak-1[i, k] + Ak-1[k, j]).
Нижний индекс k обозначает значение матрицы А после k-й итерации, но это не означает, что существует n различных матриц, этот индекс используется для сокращения записи.
Равенства Ak[i, k] = Ak-1[i, k] и Ak[k, j] = Ak-1[k, j] означают, что на k-й итерации элементы матрицы A, стоящие в k-й строке и k-м столбце, не изменяются. Более того, все вычисления можно выполнить с применением только одного экземпляра матрицы A. Представим алгоритм Флойда в виде следующей процедуры.
procedure Floyd (var A, P: array[1..n, 1..n] of real;
С: аrrау[1..n, 1..n] of real);
var
i, j, k: integer;
begin
for i := 1 to n do
for j := 1 to n do
begin
A[i, j] := C[i, j];
P[i,j] := 0;
end;
for i := 1 to n do A[i, i] := 0;
for k := 1 to n do
for i := 1 to n do
for j : = 1 to n do
if (A[i, k] + A[k, j]) < A[i, j] then
A[i, j]:= A[i, k] + A[k, j];
P[i,j]:= k;
end;
Листинг 5.12 – Алгоритм Флойда, сохраняющий кратчайшие пути в матрице P
procedure path(i, j: integer);
var
k: integer;
begin
k:= P[i, j];
if k = 0 then return;
path(d, k);
writeln(k) ;
path(k, j)
end; {path }
Листинг 5.13 – Алгоритм вывода на печать кратчайшего пути из i в j
Рисунок 5.12 – Уточнение кратчайшего пути из вершины i в вершину j
Рисунок 5.13 – Работа алгоритма Флойда
Следует заметить, что если в графе существует контур отрицательной суммарной длины, то вес любого пути, проходящего через вершину из этого контура, можно сделать сколь угодно малой, «прокрутившись» в контуре необходимое количество раз. Поэтому поставленная задача разрешима не всегда. В случае, описанном выше, алгоритм Флойда не применим. Останавливаясь подробнее надо заметить, что если граф неориентированный, то ребро с отрицательным весом является как раз таким контуром (проходя по нему в обоих направлениях столько раз пока не сделаем вес достаточно малым).
Заметим, что если граф неориентированный, то все матрицы, получаемые в результате преобразований симметричны и, следовательно, достаточно вычислять только элементы расположенные выше главной диагонали.
Время выполнения этого алгоритма, очевидно, имеет порядок O(n3), поскольку в нем присутствуют вложенные друг в друга три цикла.
- Министерство образования Российской Федерации
- Содержание
- 1.2 Скорость роста функций
- 1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- 1.4 Типы данных, структуры данных и абстрактные типы данных
- 1.5 Динамические множества
- 2 Алгоритмы сортировок
- 2.1 Понятие внутренней и внешней сортировки
- 2.2 Сортировка вставками
- 2.3 Сортировка слиянием
- 2.3.1 Описание алгоритма
- 2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- 2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- 2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- 2.4 Пирамидальная сортировка
- 2.4.1 Введение в алгоритм
- 2.4.2 Сохранение основного свойства кучи
- 2.4.3 Построение кучи
- 2.5 Быстрая сортировка
- 2.5.1 Введение в алгоритм
- 2.5.2 Описание
- 2.5.3 Разбиение массива
- 2.5.4 Особенности работы быстрой сортировки
- 2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- 2.6.1 Введение
- 2.6.2 Разрешающее дерево сортировки сравнениями
- 2.7 Цифровая сортировка
- 2.8 Сортировка вычерпыванием
- 2.8.1 Описание алгоритма
- 2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- 2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- 2.9 Сортировка подсчетом
- 2.9.1 Описание алгоритма
- 2.9.2 Анализ времени работы
- 3 Элементарные и нелинейные структуры данных
- 3.1 Элементарные структуры: список, стек, очередь, дек
- 3.1.1 Список Линейный однонаправленный список
- Линейный двунаправленный список
- Двунаправленный список с фиктивными элементами
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- 3.1.2 Стек
- 3.1.3 Очередь
- 3.1.3 Дек
- 3.2 Нелинейные структуры данных
- 3.2.1 Представление корневых деревьев в эвм
- Обходы деревьев
- 3.2.2 Двоичные деревья Спецификация двоичных деревьев
- Реализация
- Обходы двоичных деревьев
- 3.2.3 Двоичные деревья поиска Основные операции
- Минимум и максимум
- Следующий и предыдущий элементы
- Добавление и удаление
- Случайные деревья поиска
- Оптимальные деревья поиска
- 4 Хеширование
- 4.1 Введение
- 4.2 Прямая адресация; таблицы с прямой адресацией
- 4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- Разрешение коллизий с помощью цепочек
- Анализ хеширования с цепочками
- 4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- Ключи как натуральные числа
- Деление с остатком
- Умножение
- Универсальное хеширование
- 4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- Линейная последовательность проб
- 1 / (1 – )
- 5 Основные принципы разработки алгоритмов
- 5.1 Введение в теорию графов
- 5.1.1 Графы
- 5.1.2 Представление графов
- 5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- 5.2.1 Поиск в ширину (волновой алгоритм)
- 5.2.2 Анализ поиска в ширину
- 5.2.3 Деревья поиска в ширину
- 5.2.4 Поиск в глубину
- 5.2.5 Анализ поиска в глубину
- 5.2.6 Свойства поиска в глубину
- 5.2.7 Классификация рёбер
- 5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- 5.3.1 Топологическая сортировка
- 5.3.2 Сильно связные компоненты
- 5.4 Алгоритм построения минимального остовного дерева
- 5.4.1 Остовные деревья минимальной стоимости
- 5.4.2 Построение минимального покрывающего дерева
- 5.4.3 Алгоритмы Крускала и Пpимa
- 5.4.4 Алгоритм Крускала
- 5.4.5 Алгоритм Прима
- 5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- 5.5.1 Нахождение кратчайшего пути
- 5.5.2 Алгоритм Дейкстры
- 5.5.3 Алгоритм Флойда
- 5.6 Поиск с возвратом
- 5.6.1 Введение
- 5.6.2 Переборные алгоритмы
- 5.6.3 Метод ветвей и границ
- 5.6.4 Метод альфа-бета отсечения
- 5.6.5 Локальные и глобальные оптимальные решения
- 5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- 5.7.1 «Ханойские башни»
- 5.8 Жадные алгоритмы и динамическое программирование
- 5.8.1 Задача о выборе заявок
- 5.8.2 Дискретная задача о рюкзаке
- 5.8.3 Непрерывная задача о рюкзаке
- 5.8.4 Числа Фибоначчи
- 5.8.5 Задача триангуляции многоугольника
- 5.8.6 Дп, жадный алгоритм или что-то другое?