Аналогии цепей различной физической природы;
Моделирование аналоговое, один из важнейших видов моделирования, основанный на аналогии (в более точных терминах - изоморфизме) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими (дифференциальными, алгебраическими или какими-либо другими) уравнениями. Простой пример - две системы, первая из которых имеющая механическую природу, состоит из оси, передающей вращение через пружину и маховик, погруженный частично в вязкую тормозящую жидкость, валу, жестко связанному с маховиком. Вторая система - электрическая - состоит из источника электродвижущей силы, соединённого через катушку индуктивности, конденсатор и активное сопротивление со счётчиком электрической энергии. Если подобрать значения индуктивности, ёмкости и сопротивления так, чтобы они определённым образом соответствовали упругости пружины, инерции маховика и трению жидкости, то эти системы обнаружат структурное и функциональное сходство (даже тождество), выражаемое, в частности, в том, что они будут описываться одним и тем же дифференциальным уравнением с постоянными коэффициентами вида Это уравнение может служить «теоретической моделью» обеих систем, любая же из них - «экспериментальной моделью» этого уравнения и «аналоговой моделью» друг друга. Эта аналогия лежит в основе электрического моделирования механических систем: электрические модели гораздо более удобны для экспериментального исследования, нежели моделируемые механические. Другой традиционной областью применения Моделирование аналоговое является исследование процессов теплопроводности, основанное на электротепловой и гидротепловой аналогиях (в первой из них аналогами температурного поля в твёрдом теле и теплоёмкости служат соответственно поле электрического потенциала в электропроводной среде и ёмкости некоторых конденсаторов, во второй - температура моделируется уровнем воды в вертикальных стеклянных сосудах, образующих гидравлическую модель, теплоёмкость элементарного объёма - площадью поперечного сечения этих сосудов, а тепловое сопротивление - гидравлическим сопротивлением соединяющих сосуды трубок). Для исследования лучистого (радиационного) переноса тепла часто применяют метод светового моделирования, при котором потоки теплового излучения заменяют подобными им потоками излучения светового. Таким путём определяют угловые коэффициенты излучения, а если оптические свойства (степень черноты и поглощательные способности) соответствующих поверхностей у модели и натуры тождественны, то и распределение тепловых потоков по поверхностям, входящим в систему лучистого теплообмена. До создания цифровых электронных вычислительных машин в конце 1940-х гг. Моделирование аналоговое было основным способом «предметно-математического моделирования» (см. об этом в ст. Моделирование) многих процессов, связанных с распространением электромагнитных и звуковых волн, диффузии газов и жидкостей, движения и фильтрации жидкостей в пористых средах, кручения стержней и др. (в связи с чем его часто называли тогда просто «математическим моделированием»), причём для каждой конкретной задачи моделирования строилась своя «сеточная» модель (основными её элементами служили соединённые в плоскую сеточную схему электрические сопротивления различных видов), а аналоговые вычислительные машины позволяли проводить Моделирование аналоговое целых классов однородных задач. В настоящее время значение Моделирование аналоговое значительно уменьшилось, поскольку моделирование на ЭВМ имеет большие преимущества перед ним в отношении точности моделирования и универсальности. В достаточно фиксированных и специальных задачах свои преимущества (простота, а тем самым и дешевизна технического выполнения) имеет и Моделирование аналоговое Употребительно также и совместное использование обоих методов (см. Гибридная вычислительная система).
- Моделирование в системе MathCad типовых периодических сигналов (виртуальные генераторы);
- Правило трёх сигм – (запомните!!!)
- Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
- Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);
- Функции Бесселя первого рода
- Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры бпф;
- Вычисление спектральной плотности импульсных сигналов с помощью бпф
- Гармонический сигнал
- Виды колебаний
- Применение бпф для моделирования искажений сигналов в линейных цепях
- Применение бпф для фильтрации сигналов
- Аналогии цепей различной физической природы;
- Математические модели накопителей потенциальной и кинетической энергии;
- Кинетические механические накопители
- Колебательные (резонансные) накопители энергии
- Механические накопители с использованием сил упругости
- Пружинные механические накопители
- Тепловые накопители энергии
- Электрические накопители энергии
- Конденсаторы
- Дифференциальные уравнения простейших цепей;
- Передаточные функции простейших цепей;
- Изображение по Лапласу простейших сигналов;
- Структурные модели сложных цепей;
- Моделирование переходных процессов
- Моделирование частотных характеристик простейших цепей;
- Встроенные функции MathCad законов распределения вероятностей;
- Простейшие алгоритмы генераторов случайных чисел rnd(1);
- Источники случайных чисел
- Детерминированные гпсч
- Гпсч с источником энтропии или гсч
- Гпсч в криптографии
- Примеры криптостойких гпсч Циклическое шифрование
- Аппаратный генератор случайных чисел
- Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
- Моделирование корреляционной матрицы системы случайных выборок
- Встроенные функции MathCad для построения гистограмм случайных выборок
- Имитационное моделирование разброса сопротивлений в партии резисторов;
- Моделирование игры в кости;
- Моделирование доски Гальтона;
- Моделирование броуновского движения частицы;
- Сущность явления
- Теория броуновского движения Построение классической теории
- Экспериментальное подтверждение
- Броуновское движение как немарковский случайный процесс
- Многомерный винеровский процесс
- Корреляционная функция и ее свойства;
- Спектральная плотность мощности и ее свойства;
- Формальное определение
- Связь корреляционной функции и спектральной плотности мощности;
- Корреляционная функция белого шума на выходе фильтра низких частот;
- Корреляционная функция узкополосного сигнала (белого шума на выходе полосового фильтра второго порядка);