Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:
|
где k - номер гармоники; - угловая частота k - ой гармоники; ω1=ω=2π/T- угловая частота первой гармоники; - нулевая гармоника.
|
Одним из фундаментальных положений математики, нашедшим широкое применение во многих прикладных задачах (процессы передачи информации, в теории электротехники, в исследовании движения машин, в теории корабля и др.), является возможность описания любой периодической функции f(t) с периодом Т, удовлетворяющей условиям Дирихле (согласно теореме Дирихле периодическая функция должна иметь конечное число разрывов и непрерывность производных между ними.), с помощью тригонометрического ряда Фурье:
, | (1) |
где 1 = 2 /T - частота повторения (или частота первой гармоники); k - номер гармоники. Этот ряд содержит бесконечное число косинусных или синусных составляющих - гармоник, причем амплитуды этих составляющих ak и bk являются коэффициентами Фурье, определяемыми интегральными выражениями:
| (2) (3) |
Помимо упомянутой формы ряд Фурье можно представить в виде
, | (4) |
где амплитуда Аk и фаза k гармоник определяются выражениями:
| (5) (6) |
Спектром временной зависимости (функции) f(t) называется совокупность ее гармонических составляющих, образующих ряд Фурье. Спектр можно характеризовать некоторой зависимостью Аk (спектр амплитуд) и k (спектр фаз) от частоты k = k 1.
Спектральный анализ периодических функций заключается в нахождении амплитуды Аk и фазы k гармоник (косинусоид) ряда Фурье (4). Задача, обратная спектральному анализу, называется спектральным синтезом
Спектральный анализ на основе быстрого преобразования Фурье
Встроенные в Mathcad средства быстрого преобразования Фурье (БПФ) существенно упрощают процедуру приближенного спектрального анализа. БПФ - быстрый алгоритм переноса сведений о функции, заданной 2m (m - целое число) отсчетами во временной области, в частотную область. Если речь идет о функции f(t), заданной действительными отсчетами, следует использовать функцию fft.
fft(v) | Возвращает прямое БПФ 2m-мерного вещественнозначного вектора v, где v - вектор, элементы которого хранят отсчеты функции f(t). |
Результатом будет вектор А размерности 1 + 2m - 1 с комплексными элементами - отсчетами в частотной области. Фактически действительная и мнимая части вектора есть коэффициенты Фурье ak и bk, что существенно упрощает их получение (см. Приложение 3).
Функция ifft реализует обратное БПФ:
ifft(v) | Возвращает обратное БПФ для вектора v с комплексными элементами. Вектор v имеет 1 + 2m - 1 элементов. |
Результатом будет вектор А размерности 2m с действительными элементами.
На Рисунке 18 показано применение БПФ для спектрального анализа и синтеза импульса.
Рисунок 18. Спектральный анализ с использованием БПФ
- Моделирование в системе MathCad типовых периодических сигналов (виртуальные генераторы);
- Правило трёх сигм – (запомните!!!)
- Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
- Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);
- Функции Бесселя первого рода
- Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры бпф;
- Вычисление спектральной плотности импульсных сигналов с помощью бпф
- Гармонический сигнал
- Виды колебаний
- Применение бпф для моделирования искажений сигналов в линейных цепях
- Применение бпф для фильтрации сигналов
- Аналогии цепей различной физической природы;
- Математические модели накопителей потенциальной и кинетической энергии;
- Кинетические механические накопители
- Колебательные (резонансные) накопители энергии
- Механические накопители с использованием сил упругости
- Пружинные механические накопители
- Тепловые накопители энергии
- Электрические накопители энергии
- Конденсаторы
- Дифференциальные уравнения простейших цепей;
- Передаточные функции простейших цепей;
- Изображение по Лапласу простейших сигналов;
- Структурные модели сложных цепей;
- Моделирование переходных процессов
- Моделирование частотных характеристик простейших цепей;
- Встроенные функции MathCad законов распределения вероятностей;
- Простейшие алгоритмы генераторов случайных чисел rnd(1);
- Источники случайных чисел
- Детерминированные гпсч
- Гпсч с источником энтропии или гсч
- Гпсч в криптографии
- Примеры криптостойких гпсч Циклическое шифрование
- Аппаратный генератор случайных чисел
- Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
- Моделирование корреляционной матрицы системы случайных выборок
- Встроенные функции MathCad для построения гистограмм случайных выборок
- Имитационное моделирование разброса сопротивлений в партии резисторов;
- Моделирование игры в кости;
- Моделирование доски Гальтона;
- Моделирование броуновского движения частицы;
- Сущность явления
- Теория броуновского движения Построение классической теории
- Экспериментальное подтверждение
- Броуновское движение как немарковский случайный процесс
- Многомерный винеровский процесс
- Корреляционная функция и ее свойства;
- Спектральная плотность мощности и ее свойства;
- Формальное определение
- Связь корреляционной функции и спектральной плотности мощности;
- Корреляционная функция белого шума на выходе фильтра низких частот;
- Корреляционная функция узкополосного сигнала (белого шума на выходе полосового фильтра второго порядка);