Моделирование переходных процессов
простейших цепей;
Под расчетом (моделированием) переходных процессов в схеме подразумевают необходимость определения токов и напряжений в любой точке схемы в заданные моменты времени.
Если цепь содержит индуктивности L или емкости C , то аналитически параметры цепи, зависящие от времени можно рассчитать только путем решения дифференциальных уравнений. На рисунке 1 показан простой пример такой цепи, в которой емкость подключается к источнику постоянного напряжения.
В начальный момент времени t = 0, uc = uc0. При постоянной времени τ = RC, аналитическое решение выглядит следующим образом:
. (1.1)
При использовании ЭВМ для решения дифференциальных уравнений используются численные методы. В этом случае мгновенные значения каждого параметра цепи определяются только для дискретных моментов времени. На основании начальных условий (t = 0) вычисляются параметры цепи сначала в момент t1, затем в моменты t2, t3, … и так далее, до требуемого момента времени. Каждый параметр вычисляется на основании значений, полученных в предыдущие моменты времени. Например, напряжение u1, определяется на основании известного uc0 , а uc2 на основании рассчитанного uc1 (рисунок 2).
В общем случае обозначим последние уже вычисленные значения параметров цепи индексом n, а еще неизвестные параметры, которые предстоит определить на следующем шаге – индексом n + 1. Интервал времени h, равный:
h = tn+1 - tn (1.2)
называется шагом интегрирования. В общем случае шаг интегрирования может изменяться при расчете переходного процесса.
При расчете переходных процессов цепи с несколькими реактивными элементами необходимо для каждого момента времени решить систему обыкновенных дифференциальных уравнений.
Разработано достаточно много численных методов решения систем дифференциальных уравнений. Наиболее известные из них: явный метод Эйлера, метод трапеций, неявный метод Эйлера.
Рассмотрим в качестве примера дифференциальное уравнение первого порядка:
(1.3)
Требуется найти функцию x(t), при известных начальных условиях, удовлетворяющую уравнению (1.3).
Функцию x(t) между точками tn и tn+1 можно аппроксимировать прямой линией с тангенсом угла наклона α, равным:
(1.4)
Уравнение (1.4 ) описывает производную как в момент времени tn:
(1.5)
так и в момент времени tn+1:
(1.6)
В явном методе Эйлера очередное значение функции x(t) вычисляется по выражению полученному из (1.5):
(1.7)
Значение , рассчитывается по исходному уравнению (1.3) на каждом шаге. Метод, называется явным, так как неизвестная есть только в одной части ( уже имеется.).
В неявном методе Эйлера очередное значение функции x(t) вычисляется по выражению полученному из (1.6):
(1.8)
Так как в обеих частях уравнения есть неизвестные, метод называется неявным. В этом случае приходится на каждом шаге решать уравнение (1.8), относительно xn+1.
Основное преимущество неявных методов: отсутствие ограничений на шаг интегрирования (или эти ограничения незначительны). Поэтому в программах СМ нашел применение неявный метод Эйлера (метод первого порядка), а также методы второго порядка (метод трапеций, он же – модифицированный метод Эйлера) и другие.
Опуская некоторые теоретические рассуждения, отметим, что для решения численным методом системы дифференциальных уравнений моделируемой схемы в базисе узловых потенциалов компонентные дифференциальные или интегральные уравнения необходимо привести к дискретному виду. Напомним, компонентные уравнения для емкости и индуктивности в базисе узловых потенциалов имеют вид:
; (1.9)
Для решения неявным методом Эйлера дискретизированные формулы можно представить в следующем виде:
; ; (1.10)
где компоненты и играют роль фиктивных проводимостей для емкости и индуктивности соответственно.
При решении задачи в базисе узловых потенциалов, вектор токов составляется на основе уравнений (1.10), если ветвь содержит емкость или индуктивность. При этом значения и заменяются через разности потенциалов, а значения и предполагаются известными из предыдущих вычислений или начальных условий.
Дискретные схемы замещения, соответствующие выражениям (10) показаны на рисунке 4.
При формировании матрицы узловых проводимостей G вклад каждой емкости или индуктивности равен их фиктивной проводимости с соответствующими знаками.
Таким образом, для решения задачи численными методами, заменяем реактивные элементы их дискретными моделями и приходим к системе конечно-разностных (не дифференциальных) уравнений, в общем случае нелинейной (если схема содержит еще и нелинейные элементы). Процесс перехода от дифференциальных уравнений к их конечно-разностным аппроксимациям называется алгебраизацией.
В этом случае теоретическая модель схемы в базисе узловых потенциалов имеет вид:
. (1.11)
где - вектор поправок, - матрица проводимостей (матрица Якоби); k – номер ньютоновской итерации, n – номер текущего (уже рассчитанного) момента времени.
Итак, вычислительный процесс расчета переходных процессов в схеме состоит из следующих процедур:
1. Составляем модель схемы в форме уравнений (1.11), заменяя реактивные элементы схемы их дискретными моделями (вид которых зависит от метода интегрирования).
2. На первом шаге интегрирования, исходя из начальных условий и заданного шага интегрирования h, решаем систему (1.11), в общем случае нелинейных уравнений, методом Ньютона. Напомним, что на каждой итерации по методу Ньютона решается система линейных уравнений (на каждой итерации ищутся поправки Δφn+1). В результате получаем значения узловых потенциалов для первого момента времени, отстоящего на h от начального.
3. Далее на очередном шаге полагаем, что , и снова решаем (1.11), относительно неизвестных φn+1 узловых потенциалов. Этот процесс повторяется до тех пор, пока не будет пройден заданный интервал времени.
- Моделирование в системе MathCad типовых периодических сигналов (виртуальные генераторы);
- Правило трёх сигм – (запомните!!!)
- Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
- Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);
- Функции Бесселя первого рода
- Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры бпф;
- Вычисление спектральной плотности импульсных сигналов с помощью бпф
- Гармонический сигнал
- Виды колебаний
- Применение бпф для моделирования искажений сигналов в линейных цепях
- Применение бпф для фильтрации сигналов
- Аналогии цепей различной физической природы;
- Математические модели накопителей потенциальной и кинетической энергии;
- Кинетические механические накопители
- Колебательные (резонансные) накопители энергии
- Механические накопители с использованием сил упругости
- Пружинные механические накопители
- Тепловые накопители энергии
- Электрические накопители энергии
- Конденсаторы
- Дифференциальные уравнения простейших цепей;
- Передаточные функции простейших цепей;
- Изображение по Лапласу простейших сигналов;
- Структурные модели сложных цепей;
- Моделирование переходных процессов
- Моделирование частотных характеристик простейших цепей;
- Встроенные функции MathCad законов распределения вероятностей;
- Простейшие алгоритмы генераторов случайных чисел rnd(1);
- Источники случайных чисел
- Детерминированные гпсч
- Гпсч с источником энтропии или гсч
- Гпсч в криптографии
- Примеры криптостойких гпсч Циклическое шифрование
- Аппаратный генератор случайных чисел
- Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
- Моделирование корреляционной матрицы системы случайных выборок
- Встроенные функции MathCad для построения гистограмм случайных выборок
- Имитационное моделирование разброса сопротивлений в партии резисторов;
- Моделирование игры в кости;
- Моделирование доски Гальтона;
- Моделирование броуновского движения частицы;
- Сущность явления
- Теория броуновского движения Построение классической теории
- Экспериментальное подтверждение
- Броуновское движение как немарковский случайный процесс
- Многомерный винеровский процесс
- Корреляционная функция и ее свойства;
- Спектральная плотность мощности и ее свойства;
- Формальное определение
- Связь корреляционной функции и спектральной плотности мощности;
- Корреляционная функция белого шума на выходе фильтра низких частот;
- Корреляционная функция узкополосного сигнала (белого шума на выходе полосового фильтра второго порядка);