Корреляционная функция и ее свойства;
Корреля́ция (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.[1] Математической мерой корреляции двух случайных величин служит корреляционное отношение [2], либо коэффициент корреляции (или )[1]. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической[3].
Корреляционная функция — функция времени или пространственных координат, которая задает корреляцию в системах со случайными процессами.
Зависящая от времени корреляция двух случайных функций X(t) и Y(t) определяется, как
,
где угловые скобки обозначают процедуру усреднения.
Если корреляционная функция вычисляется для одного и того же процесса, она называется автокорреляционной:
.
Аналогично, можно вычислить корреляционную функцию для процессов, происходящих в разных точках пространства в различные моменты времени:
.
Корреляционные функции широко используются в статистической физике и других дисциплинах, изучающих случайные (стохастические) процессы.
Свойства:
1) R(τ)=R(-τ). Функция R(τ) – является чётной.
2) Если х(t) – синусоидальная функция времени, то её автокорреляционная функция – косинусоидальная той же частоты. Информация о начальной фазе теряется. Если x(t)=A*sin(ωt+φ), то R(τ)=A2/2 * cos(ωτ).
3) Функция автокорреляции и спектра мощности связаны преобразованием Фурье.
4) Если х(t) – любая периодическая функция, то R(τ) для неё может быть представлена в виде суммы автокорреляционных функций от постоянной составляющей и от синусоидально изменяющейся составляющей.
5) Функция R(τ) не несёт никакой информации о начальных фазах гармонических составляющих сигнала.
6) Для случайной функции времени R(τ) быстро уменьшается с увеличением τ. Интервал времени, после которого R(τ) становится равным 0 называется интервалом автокорреляции.
7) Заданной x(t) соответствует вполне определённое R(τ), но для одной и той же R(τ) могут соответствовать различные функции x(t)
-
Содержание
- Моделирование в системе MathCad типовых периодических сигналов (виртуальные генераторы);
- Правило трёх сигм – (запомните!!!)
- Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
- Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);
- Функции Бесселя первого рода
- Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры бпф;
- Вычисление спектральной плотности импульсных сигналов с помощью бпф
- Гармонический сигнал
- Виды колебаний
- Применение бпф для моделирования искажений сигналов в линейных цепях
- Применение бпф для фильтрации сигналов
- Аналогии цепей различной физической природы;
- Математические модели накопителей потенциальной и кинетической энергии;
- Кинетические механические накопители
- Колебательные (резонансные) накопители энергии
- Механические накопители с использованием сил упругости
- Пружинные механические накопители
- Тепловые накопители энергии
- Электрические накопители энергии
- Конденсаторы
- Дифференциальные уравнения простейших цепей;
- Передаточные функции простейших цепей;
- Изображение по Лапласу простейших сигналов;
- Структурные модели сложных цепей;
- Моделирование переходных процессов
- Моделирование частотных характеристик простейших цепей;
- Встроенные функции MathCad законов распределения вероятностей;
- Простейшие алгоритмы генераторов случайных чисел rnd(1);
- Источники случайных чисел
- Детерминированные гпсч
- Гпсч с источником энтропии или гсч
- Гпсч в криптографии
- Примеры криптостойких гпсч Циклическое шифрование
- Аппаратный генератор случайных чисел
- Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
- Моделирование корреляционной матрицы системы случайных выборок
- Встроенные функции MathCad для построения гистограмм случайных выборок
- Имитационное моделирование разброса сопротивлений в партии резисторов;
- Моделирование игры в кости;
- Моделирование доски Гальтона;
- Моделирование броуновского движения частицы;
- Сущность явления
- Теория броуновского движения Построение классической теории
- Экспериментальное подтверждение
- Броуновское движение как немарковский случайный процесс
- Многомерный винеровский процесс
- Корреляционная функция и ее свойства;
- Спектральная плотность мощности и ее свойства;
- Формальное определение
- Связь корреляционной функции и спектральной плотности мощности;
- Корреляционная функция белого шума на выходе фильтра низких частот;
- Корреляционная функция узкополосного сигнала (белого шума на выходе полосового фильтра второго порядка);