Источники случайных чисел
Источники настоящих случайных чисел найти трудно. Физические шумы, такие как детекторы событий ионизирующей радиации, дробовой шум в резисторе или космическое излучениемогут быть такими источниками. Однако применяются такие устройства в приложениях сетевой безопасности редко. Сложности также вызывают грубые атаки на подобные устройства.
Альтернативным решением является создание некоторого набора из большого количества случайных чисел и опубликование его в некотором словаре. Тем не менее, и такие наборы обеспечивают очень ограниченный источник чисел по сравнению с тем количеством, которое требуется приложениям сетевой безопасности. Хотя данные наборы действительно обеспечивают статистическую случайность, они не достаточно случайны, так как противник может получить копию словаря.
Генератор псевдослучайных чисел включён в состав многих современных процессоров (напр., семейства x86)
Криптографические приложения используют для генерации случайных чисел особенные алгоритмы. Эти алгоритмы заранее определены и, следовательно, генерируют последовательность чисел, которая теоретически не может быть статистически случайной. В то же время, если выбрать хороший алгоритм, полученная численная последовательность будет проходить большинство тестов на случайность. Такие числа называют псевдослучайными числами.
- Моделирование в системе MathCad типовых периодических сигналов (виртуальные генераторы);
- Правило трёх сигм – (запомните!!!)
- Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
- Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);
- Функции Бесселя первого рода
- Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры бпф;
- Вычисление спектральной плотности импульсных сигналов с помощью бпф
- Гармонический сигнал
- Виды колебаний
- Применение бпф для моделирования искажений сигналов в линейных цепях
- Применение бпф для фильтрации сигналов
- Аналогии цепей различной физической природы;
- Математические модели накопителей потенциальной и кинетической энергии;
- Кинетические механические накопители
- Колебательные (резонансные) накопители энергии
- Механические накопители с использованием сил упругости
- Пружинные механические накопители
- Тепловые накопители энергии
- Электрические накопители энергии
- Конденсаторы
- Дифференциальные уравнения простейших цепей;
- Передаточные функции простейших цепей;
- Изображение по Лапласу простейших сигналов;
- Структурные модели сложных цепей;
- Моделирование переходных процессов
- Моделирование частотных характеристик простейших цепей;
- Встроенные функции MathCad законов распределения вероятностей;
- Простейшие алгоритмы генераторов случайных чисел rnd(1);
- Источники случайных чисел
- Детерминированные гпсч
- Гпсч с источником энтропии или гсч
- Гпсч в криптографии
- Примеры криптостойких гпсч Циклическое шифрование
- Аппаратный генератор случайных чисел
- Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
- Моделирование корреляционной матрицы системы случайных выборок
- Встроенные функции MathCad для построения гистограмм случайных выборок
- Имитационное моделирование разброса сопротивлений в партии резисторов;
- Моделирование игры в кости;
- Моделирование доски Гальтона;
- Моделирование броуновского движения частицы;
- Сущность явления
- Теория броуновского движения Построение классической теории
- Экспериментальное подтверждение
- Броуновское движение как немарковский случайный процесс
- Многомерный винеровский процесс
- Корреляционная функция и ее свойства;
- Спектральная плотность мощности и ее свойства;
- Формальное определение
- Связь корреляционной функции и спектральной плотности мощности;
- Корреляционная функция белого шума на выходе фильтра низких частот;
- Корреляционная функция узкополосного сигнала (белого шума на выходе полосового фильтра второго порядка);