Нормальный закон распределения вероятностей.
Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности
Нормальный закон распределения также называется законом Гаусса.
Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.
Можно легко показать, что параметры и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.
Найдем функцию распределения F(x).
График плотности нормального распределения называется нормальной кривой или кривой Гаусса.
Нормальная кривая обладает следующими свойствами:
1) Функция определена на всей числовой оси.
2) При всех х функция распределения принимает только положительные значения.
3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х, значение функции стремится к нулю.
4) Найдем экстремум функции.
Т.к. при y’ > 0 при x < m и y’ < 0 при x > m , то в точке х = т функция имеет максимум, равный .
5) Функция является симметричной относительно прямой х = а, т.к. разность
(х – а) входит в функцию плотности распределения в квадрате.
6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.
При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.
В этих точках значение функции равно .
- Основные понятия теории множеств. Множества и отношения.
- Основные операции над множествами. Соотношения между множествами.
- Диаграммы Эйлера-Венна. Универсальное множество.
- Перестановки. Бинарные отношения.
- Высказывания и логические операции над ними. Повествовательные предложения.
- Основные операции над множествами.
- Декартово произведение множеств.
- Числовые множества. Принадлежность.
- Элементы комбинаторики. Перестановки. Сочетания. Размещения.
- Представление бинарных отношений графами.
- Классическое определение вероятности.
- Теоремы умножения вероятностей.
- Дискретные случайные величины.
- Нормальный закон распределения вероятностей.
- Условная вероятность. Независимость событий.
- Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Математическая статистика.
- Случайные величины (с.В.). Дискретные и непрерывные.
- Функция распределения случайной величины.
- Характеристики вариационного ряда. Среднее выборочное.
- Статистическое распределение выборки.
- Языки программирования высокого уровня.
- Словесные алгоритмы.
- Блок схемы. Ветвление.
- Блок схемы. Циклы.