Перестановки. Бинарные отношения.
В комбинаторике перестано́вка — это упорядоченный набор чисел обычно трактуемый как биекция на множестве , которая числу i ставит соответствие i-й элемент из набора. Число n при этом называется порядком перестановки.
Число всех перестановок порядка n равно числу размещений из n по n, т.е. факториалу:
В математике бинарным отношением называется подмножество декартова произведения двух множеств. В частности, бинарным отношением на множестве называется множество упорядоченных пар элементов этого множества.
Бинарные отношения могут обладать различными свойствами, такими как
Рефлексивность: .
Антирефлексивность (иррефлексивность): .
Симметричность: .
Антисимметричность: .
Транзитивность: .
Связность: .
Асимметричность: . Асимметричность эквивалентна одновременной антирефлексивности и антисимметричности отношения.
Виды отношений
Рефлексивное транзитивное отношение называется отношением квазипорядка.
Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.
Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.
Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.
Полное антисимметричное транзитивное отношение называется отношением линейного порядка.
Антирефлексивное асимметричное отношение называется отношением доминирования.
- Основные понятия теории множеств. Множества и отношения.
- Основные операции над множествами. Соотношения между множествами.
- Диаграммы Эйлера-Венна. Универсальное множество.
- Перестановки. Бинарные отношения.
- Высказывания и логические операции над ними. Повествовательные предложения.
- Основные операции над множествами.
- Декартово произведение множеств.
- Числовые множества. Принадлежность.
- Элементы комбинаторики. Перестановки. Сочетания. Размещения.
- Представление бинарных отношений графами.
- Классическое определение вероятности.
- Теоремы умножения вероятностей.
- Дискретные случайные величины.
- Нормальный закон распределения вероятностей.
- Условная вероятность. Независимость событий.
- Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Математическая статистика.
- Случайные величины (с.В.). Дискретные и непрерывные.
- Функция распределения случайной величины.
- Характеристики вариационного ряда. Среднее выборочное.
- Статистическое распределение выборки.
- Языки программирования высокого уровня.
- Словесные алгоритмы.
- Блок схемы. Ветвление.
- Блок схемы. Циклы.