Формула Бернулли. Предельные теоремы.
Формула Бернулли
Пусть проводятся независимые испытания (такие, при которых вероятность появления события в каждом испытании не зависит от результатов предыдущих испытаний). Далее, вероятность наступления интересующего нас события в каждом испытании постоянна и равна p. Тогда вероятность того, что рассматриваемое событие появится ровно k раз при n испытаниях (безразлично, в каком порядке), равна
В формуле Бернулли используется число сочетаний.
Повторюсь, что для реализации схемы Бернулли необходимы два условия:
1) независимость проводимых испытаний;
2) p = const (постоянное значение вероятности появления события)
Распределение вероятностей в схеме Бернулли - биномиальное. Наивероятнейшее число появления события (мода) при n испытаниях заключено в пределах np-q ≤ Mo ≤ np+p,
Пример.
Система, составленная из четырёх блоков, работает исправно, если за рассматриваемый период выйдет из строя не более двух блоков. Найти вероятность безотказной работы системы блоков, если отказы блоков являются независимыми событиями и вероятность отказа каждого блока равна 1/8.
Вероятность того, что за рассматриваемый период ни один из блоков не выйдет из строя:
Вероятность того, что за рассматриваемый период выйдет из строя один блок:
Вероятность того, что за рассматриваемый период выйдет из строя два блока:
Вероятность безотказной работы системы:
- Основные понятия теории множеств. Множества и отношения.
- Основные операции над множествами. Соотношения между множествами.
- Диаграммы Эйлера-Венна. Универсальное множество.
- Перестановки. Бинарные отношения.
- Высказывания и логические операции над ними. Повествовательные предложения.
- Основные операции над множествами.
- Декартово произведение множеств.
- Числовые множества. Принадлежность.
- Элементы комбинаторики. Перестановки. Сочетания. Размещения.
- Представление бинарных отношений графами.
- Классическое определение вероятности.
- Теоремы умножения вероятностей.
- Дискретные случайные величины.
- Нормальный закон распределения вероятностей.
- Условная вероятность. Независимость событий.
- Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Математическая статистика.
- Случайные величины (с.В.). Дискретные и непрерывные.
- Функция распределения случайной величины.
- Характеристики вариационного ряда. Среднее выборочное.
- Статистическое распределение выборки.
- Языки программирования высокого уровня.
- Словесные алгоритмы.
- Блок схемы. Ветвление.
- Блок схемы. Циклы.