Применение бпф для моделирования искажений сигналов в линейных цепях
Линейная цепь – состоит из линейных элементов (емкость, сопротивление)
Искажение сигнала - это искажение сигнала. Обусловленое не линейностью
Сопротивление – элемент, который энергию превращает в тепло.
Конденсатор - накапливает заряды.
В механике аналогией конденсатору служит пружина(элемент,который запасает энергию).
Ток течет через конденсатор, когда меняется напряжение. Чем больше скорость изменения напряжения, тем больше ток.
Самый простой сигнал: последовательность прямоугольных импульсов. Искажение наиболее просто выявить, так, как прямоугольный сигнал имеет крутые фронты.
Если пропустить сигнал прямоугольных импульсов,через простейшую Rc цепочку(фильрр низких частот),то спектр этого сигнала исказится,так,как фильтр не пропускает импульсы на больших частотах.
Активными элементами считаются источники электрической энергии (источники напряжения и тока), к пассивным элементам относятся резисторы, катушки индуктивности, электрические конденсаторы.
Количественные характеристики элементов электрической цепи называются ее параметрами.
Электрические цепи с постоянными параметрами - это такие такие цепи, в которых сопротивления резисторов R, индуктивность катушек L и емкость конденсаторов С являются постоянными, не зависящими от действующи в цепи токов и напряжений. Такие элементы называются линейными.
Если сопротивление резистора R не зависит от тока, то линейная зависимость между падением напряжения и током выражается законом Ома ur = R х ir, а вольт-амперная характеристика резистора (представляет собой прямую линию (рис. 1,а).
Если индуктивность катушки не зависит от величины (протекающего в ней тока, то потокосцепление самоиндукции катушки ψ прямо пропорционально этому току ψ= L х il (рис. 1,б).
Наконец, если емкость конденсатора С не зависит от приложенного к обкладкам напряжения uc то заряд q, накопленный на пластинах, и напряжение uc связаны между собой линейной зависимостью графически показанной на рис. 1,в.
Рис. 1. Характеристики линейных элементов электрической цепи: а - вольт-амперная характеристика резистора, б - зависимость потокосцепления от тока в катушке, в - зависимость заряда конденсатора от напряжения на нем.
Линейность сопротивления, индуктивности и емкости носит условный характер, так как в действительности все реальные элементы электрической цепи являются нелинейными. Так, при прохождении тока через резистор последний нагревается и его сопротивление изменяется.
Электрическая цепь, состоящая из линейных элементов, называется линейной электрической цепью. Процессы в таких цепях описываются линейными алгебраическими или дифференциальными уравнениями. Для анализа процессов в линейных электрических цепях используются законы Кирхгофа.
! Писала, то что запомнила с сегодняшней консультации и с лекций
-
Содержание
- Моделирование в системе MathCad типовых периодических сигналов (виртуальные генераторы);
- Правило трёх сигм – (запомните!!!)
- Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
- Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);
- Функции Бесселя первого рода
- Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры бпф;
- Вычисление спектральной плотности импульсных сигналов с помощью бпф
- Гармонический сигнал
- Виды колебаний
- Применение бпф для моделирования искажений сигналов в линейных цепях
- Применение бпф для фильтрации сигналов
- Аналогии цепей различной физической природы;
- Математические модели накопителей потенциальной и кинетической энергии;
- Кинетические механические накопители
- Колебательные (резонансные) накопители энергии
- Механические накопители с использованием сил упругости
- Пружинные механические накопители
- Тепловые накопители энергии
- Электрические накопители энергии
- Конденсаторы
- Дифференциальные уравнения простейших цепей;
- Передаточные функции простейших цепей;
- Изображение по Лапласу простейших сигналов;
- Структурные модели сложных цепей;
- Моделирование переходных процессов
- Моделирование частотных характеристик простейших цепей;
- Встроенные функции MathCad законов распределения вероятностей;
- Простейшие алгоритмы генераторов случайных чисел rnd(1);
- Источники случайных чисел
- Детерминированные гпсч
- Гпсч с источником энтропии или гсч
- Гпсч в криптографии
- Примеры криптостойких гпсч Циклическое шифрование
- Аппаратный генератор случайных чисел
- Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
- Моделирование корреляционной матрицы системы случайных выборок
- Встроенные функции MathCad для построения гистограмм случайных выборок
- Имитационное моделирование разброса сопротивлений в партии резисторов;
- Моделирование игры в кости;
- Моделирование доски Гальтона;
- Моделирование броуновского движения частицы;
- Сущность явления
- Теория броуновского движения Построение классической теории
- Экспериментальное подтверждение
- Броуновское движение как немарковский случайный процесс
- Многомерный винеровский процесс
- Корреляционная функция и ее свойства;
- Спектральная плотность мощности и ее свойства;
- Формальное определение
- Связь корреляционной функции и спектральной плотности мощности;
- Корреляционная функция белого шума на выходе фильтра низких частот;
- Корреляционная функция узкополосного сигнала (белого шума на выходе полосового фильтра второго порядка);