5.6.5 Локальные и глобальные оптимальные решения
Описанная ниже стратегия нередко приводит к оптимальному решению задачи:
Находится произвольное решение;
Для улучшения текущего решения применяется к нему какое-либо преобразование из некоторой заданной совокупности преобразований. Это улучшенное решение становится новым «текущим» решением.
Указанная процедура повторяется до тех пор, пока ни одно из преобразований в заданной их совокупности не позволит улучшить текущее решение.
Результирующее решение может, хотя и необязательно, оказаться оптимальным. В принципе, если «заданная совокупность преобразований» включает все преобразования, которые берут в качестве исходного одно решение и заменяют его каким-либо другим, процесс «улучшений» не закончится до тех пор, пока не получим оптимальное решение. Но в таком случае время выполнения пункта (2) окажется таким же, как и время, требующееся для анализа всех решений, поэтому описываемый подход в целом окажется достаточно бессмысленным.
Этот метод имеет смысл лишь в том случае, когда можно ограничить совокупность преобразований небольшим ее подмножеством, что дает возможность выполнить все преобразования за относительно короткое время: если «размер» задачи равняется n, то можно допустить O(n2) или O(n3) преобразований. Если совокупность преобразований невелика, естественно рассматривать решения, которые можно преобразовывать одно в другое за один шаг, как «близкие». Такие преобразования называются «локальными», а соответствующий метод называется локальным поиском.
Одной из задач, которую можно решить именно методом локального поиска, является задача нахождения минимального остовного дерева. Локальными преобразованиями являются такие преобразования, в ходе которых берется то или иное ребро, не относящееся к текущему остовному дереву, оно добавляется в это дерево (в результате должен получиться цикл), а затем убирается из этого цикла в точности одно ребро (предположительно, ребро с наивысшей стоимостью), чтобы образовалось новое дерево.
Время, которое занимает выполнение этого алгоритма на графе из n узлов и e ребер, зависит от количества требующихся улучшений решения. Одна лишь проверка того факта, что преобразования уже неприменимы, может занять О(n ∙ e) времени, поскольку для этого необходимо перебрать e ребер, а каждое из них может образовать цикл длиной примерно n. Таким образом, этот алгоритм несколько хуже, чем алгоритмы Прима и Крускала, однако он может служить примером получения оптимального решения на основе локального поиска.
Алгоритмы локального поиска проявляют себя с наилучшей стороны как эвристические алгоритмы для решения задач, точные решения которых требуют экспоненциальных затрат времени (относятся к классу EXPTIME). Общепринятый метод поиска состоит в следующем. Начать следует с ряда произвольных решений, применяя к каждому из них локальные преобразования до тех пор, пока не будет получено локально-оптимальное решение, то есть такое, которое не сможет улучшить ни одно преобразование. Как показывает рисунок 5.17, на основе большинства (или даже всех) произвольных начальных решений нередко будут получаться разные локально-оптимальные решения. Если повезет, одно из них окажется глобально-оптимальным, то есть лучше любого другого решения.
Рисунок 5.17 – Локальный поиск в пространстве решений
На практике можно и не найти глобально-оптимального решения, поскольку количество локально-оптимальных решений может оказаться колоссальным. Однако можно, по крайней мере, выбрать локально-оптимальное решение, имеющее минимальную стоимость среди всех найденных решений.
- Министерство образования Российской Федерации
- Содержание
- 1.2 Скорость роста функций
- 1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- 1.4 Типы данных, структуры данных и абстрактные типы данных
- 1.5 Динамические множества
- 2 Алгоритмы сортировок
- 2.1 Понятие внутренней и внешней сортировки
- 2.2 Сортировка вставками
- 2.3 Сортировка слиянием
- 2.3.1 Описание алгоритма
- 2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- 2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- 2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- 2.4 Пирамидальная сортировка
- 2.4.1 Введение в алгоритм
- 2.4.2 Сохранение основного свойства кучи
- 2.4.3 Построение кучи
- 2.5 Быстрая сортировка
- 2.5.1 Введение в алгоритм
- 2.5.2 Описание
- 2.5.3 Разбиение массива
- 2.5.4 Особенности работы быстрой сортировки
- 2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- 2.6.1 Введение
- 2.6.2 Разрешающее дерево сортировки сравнениями
- 2.7 Цифровая сортировка
- 2.8 Сортировка вычерпыванием
- 2.8.1 Описание алгоритма
- 2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- 2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- 2.9 Сортировка подсчетом
- 2.9.1 Описание алгоритма
- 2.9.2 Анализ времени работы
- 3 Элементарные и нелинейные структуры данных
- 3.1 Элементарные структуры: список, стек, очередь, дек
- 3.1.1 Список Линейный однонаправленный список
- Линейный двунаправленный список
- Двунаправленный список с фиктивными элементами
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- 3.1.2 Стек
- 3.1.3 Очередь
- 3.1.3 Дек
- 3.2 Нелинейные структуры данных
- 3.2.1 Представление корневых деревьев в эвм
- Обходы деревьев
- 3.2.2 Двоичные деревья Спецификация двоичных деревьев
- Реализация
- Обходы двоичных деревьев
- 3.2.3 Двоичные деревья поиска Основные операции
- Минимум и максимум
- Следующий и предыдущий элементы
- Добавление и удаление
- Случайные деревья поиска
- Оптимальные деревья поиска
- 4 Хеширование
- 4.1 Введение
- 4.2 Прямая адресация; таблицы с прямой адресацией
- 4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- Разрешение коллизий с помощью цепочек
- Анализ хеширования с цепочками
- 4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- Ключи как натуральные числа
- Деление с остатком
- Умножение
- Универсальное хеширование
- 4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- Линейная последовательность проб
- 1 / (1 – )
- 5 Основные принципы разработки алгоритмов
- 5.1 Введение в теорию графов
- 5.1.1 Графы
- 5.1.2 Представление графов
- 5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- 5.2.1 Поиск в ширину (волновой алгоритм)
- 5.2.2 Анализ поиска в ширину
- 5.2.3 Деревья поиска в ширину
- 5.2.4 Поиск в глубину
- 5.2.5 Анализ поиска в глубину
- 5.2.6 Свойства поиска в глубину
- 5.2.7 Классификация рёбер
- 5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- 5.3.1 Топологическая сортировка
- 5.3.2 Сильно связные компоненты
- 5.4 Алгоритм построения минимального остовного дерева
- 5.4.1 Остовные деревья минимальной стоимости
- 5.4.2 Построение минимального покрывающего дерева
- 5.4.3 Алгоритмы Крускала и Пpимa
- 5.4.4 Алгоритм Крускала
- 5.4.5 Алгоритм Прима
- 5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- 5.5.1 Нахождение кратчайшего пути
- 5.5.2 Алгоритм Дейкстры
- 5.5.3 Алгоритм Флойда
- 5.6 Поиск с возвратом
- 5.6.1 Введение
- 5.6.2 Переборные алгоритмы
- 5.6.3 Метод ветвей и границ
- 5.6.4 Метод альфа-бета отсечения
- 5.6.5 Локальные и глобальные оптимальные решения
- 5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- 5.7.1 «Ханойские башни»
- 5.8 Жадные алгоритмы и динамическое программирование
- 5.8.1 Задача о выборе заявок
- 5.8.2 Дискретная задача о рюкзаке
- 5.8.3 Непрерывная задача о рюкзаке
- 5.8.4 Числа Фибоначчи
- 5.8.5 Задача триангуляции многоугольника
- 5.8.6 Дп, жадный алгоритм или что-то другое?