1.1 Определение сппр
Информационные системы являются в наше время неотъемлемой частью технологий управления бизнесом. Практически на каждом предприятии работают информационные системы, осуществляющие функции учета и контроля деятельности фирмы. Со структурой и принципами работы таких систем вы знакомились в курсе «Информационные системы менеджмента». Однако, существуют информационные системы другого типа, которые называют системы поддержки принятия решений (СППР).
СППР возникли в результате развития управленческих информационных систем и систем управления базами данных в начале 70-х годов прошлого века. На данный момент существует огромное количество СППР, разработанных и внедренных в различных областях человеческой деятельности. Темпы их разработок постоянно возрастают.
СППР - интерактивная компьютерная система, предназначенная для поддержки принятия решений в слабоструктурированных и неструктурированных проблемах различных видов человеческой деятельности.
Существенными концепциями этого определения являются:
компьютерная интерактивная;
поддержка принятия решений (решение принимает человек);
слабоструктурированных и неструктурированных проблем (именно такими проблемами занимаются руководители).
Рассмотрим, что же представляет собой классификация проблем на слабо структурированные, неструктурированные и структурированные.
Неструктурированные задачи имеют только качественное описание, основанное на суждениях ЛПР (лица принимающего решения), количественные зависимости между основными характеристиками задачи не известны.
Структурированные задачи характеризуются существенными зависимостями, которые могут быть выражены количественно.
Слабоструктурированные задачи занимают промежуточное положение и являются "сочетающими количественные и качественные зависимости, причем малоизвестные и неопределенные стороны задачи имеют тенденцию доминировать".
Можно выделить три компонента, составляющие основу классической структуры СППР, которыми она отличается от других типов информационных систем: подсистему интерфейса пользователя, подсистему управления базой данных и подсистему управления базой моделей.
Если посмотреть на СППР с функциональной стороны, можно выделить следующие ее компоненты:
сервер хранилища данных;
инструментарий OLAP;
инструментарий Data Mining.
Эти компоненты СППР рассматривают такие основные вопросы: вопрос накопления данных и их моделирования на концептуальном уровне, вопрос эффективной загрузки данных из нескольких независимых источников и вопрос анализа данных.
Можно сказать, что использование оперативной аналитической обработки (систем OLAP) на сегодня ограничивается обеспечением доступа к многомерным данным.
Технология Data Mining представляет в СППР наибольший интерес, поскольку с ее помощью можно провести наиболее глубокий и всесторонний анализ данных и, следовательно, принимать наиболее взвешенные и обоснованные решения.
В той или иной степени Системы Поддержки Принятия Решений (СППР) присутствуют в любой информационной системе. Поэтому, осознанно или нет, к задаче создания системы поддержки принятия решений организации приступают сразу после приобретения вычислительной техники и установки программного обеспечения. По мере развития бизнеса, упорядочения структуры организации и налаживания межкорпоративных связей, проблема разработки и внедрения СППР становится особенно актуальной.
- Інформаційні системи та технології в управлінні методичні вказівки
- 1 Введення до систем підтримки прийняття рішень 4
- 2 Бізнес - прогнозування 25
- 3 Кластерний аналіз в бізнес-аналітиці 43
- 4 Вирішення задач класифікації
- 5 Література 120
- 1 Введение в Системы Поддержки Принятия Решений (сппр)
- 1.1 Определение сппр
- 1.2 Классификация сппр
- 1.3 Архитектура сппр
- 1.4 Анализ данных – основные принципы
- 1.5 Базовые методы анализа
- 1) Online Analytical Processing
- 2) Knowledge Discovery in Databases
- 3) Data Mining
- 1.6 Примеры задач, где применяются методы Data Mining
- 1.7 Программа Deductor – платформа для создания сппр
- 1.8 Контрольные вопросы
- 2 Корреляционный анализ
- 2.1 Теоретические сведения
- 2.3 Задание для самостоятельной работы
- 2.4. Контрольные вопросы
- 3 Бизнес - Прогнозирование
- 3.1 Теоретические сведения
- 3.2 Компьютерные пакеты для решения задач прогнозирования
- 3.3 Временные ряды
- 3.3.1 "Наивные" модели прогнозирования
- 3.3.2 Средние и скользящие средние
- 3.3.3 Моделирование временного ряда
- Ar(p) -авторегрессионая модель порядка p. Модель имеет вид:
- 3.3.4 Нейросетевые модели прогнозирования
- 3.3.6 Предобработка данных
- 3.4 Пример прогнозирования с помощью линейной регрессии
- 3.4.1 Импорт данных из файла
- 3.4.2 Настройка параметров столбцов
- 3.4.3 Расчет автокорреляции столбцов
- 3.4.4 Удаление аномалий
- 3.4.5 Сглаживание данных – удаление шумов
- 3.4.6 Преобразование данных к скользящему окну
- 3.4.7 Прогнозирование с помощью линейной регрессии
- 3.5 Прогнозирование с помощью нейронных сетей
- 3.5.1 Исходные данные
- 3.5.2 Удаление аномалий и сглаживание
- 3.5.3 Обучение нейросети (прогноз на 1 месяц вперед)
- 3.5.4 Построение прогноза
- 3.5.5 Результат
- 3.5.6 Выводы
- 3.6 Задание к лабораторной работе
- 3.7 Контрольные вопросы
- 4 Кластерный анализ в бизнес-аналитике
- 4.1. Теоретические основы
- 4.2 Меры близости в алгоритмах кластеризации
- 4.3 Алгоритмы кластеризации
- 4.4 Решение типовой задачи кластеризации в Deductor
- 4.4.1 Кластеризация
- 4.4.2 Выводы
- 4.6 Задания для самостоятельной работы
- 4.7 Контрольные вопросы
- 5 Методы решения задач классификации
- 5.1 Опис процесу класифікації
- 5.2 Оцінка якості моделі класифікації
- 5.3 Скоринговые модели для оценки кредитоспособности заемщиков – пример задачи классификации на основе логистической регрессии
- 5.3.1 Постановка задачи
- 5.3.2 Скоринговая карта на основе логистической регрессии
- 5.3.3 Построение модели в системе Deductor.
- 5.4 Классификация на основе дерева решений
- 5.4.1 Процесс конструирования дерева решений
- 5.4.2 Скоринговая модель на основе дерева решений
- 5.3.4 Интерактивное дерево решений
- 5. Задания к лабораторной работе
- 5.5 Контрольные вопросы
- 5 Литература