logo
ИС_і технол_управл_Лаб

Ar(p) -авторегрессионая модель порядка p. Модель имеет вид:

(3.4)

где - зависимая переменная в момент времени t.

- оцениваемые параметры. - ошибка от влияния переменных, которые не учитываются в данной модели.

Задача заключается в том, чтобы определить . Их можно оценить различными способами. Один из наиболее простых способов - посчитать их методом наименьших квадратов.

Термин авторегрессия для обозначения модели (3.4) используется потому, что она фактически представляет собой модель регрессии, в которой регрессорами служат лаги изучаемого ряда . По определению авторегрессии ошибки Et являются белым шумом и некоррелированы с лагами . Таким образом, выполнены все основные предположения регрессионного анализа: ошибки имеют нулевое математическое ожидание, некоррелированы с регрессорами, не автокоррелированы и гомоскедастичны. Следовательно, модель (3.4) можно оценивать с помощью обычного метода наименьших квадратов. Отметим, что при таком оценивании p начальных наблюдений теряются.

После построения любой модели временного ряда, прежде, чем прогнозировать по этой модели, нужно убедиться в ее адекватности, т.е. убедиться, что остатки некоррелированы между собой.

Критерий Дарбина-Уотсона является наиболее распространенным критерием для проверки корреляции внутри ряда. Если величина

, где - расхождение между фактическими и расчетными уровнями, имеет значение, близкое к 2, то можно считать модель достаточно адекватной. Когда адекватная модель найдена, можно делать прогнозы на один или несколько периодов вперед.