3.3 Временные ряды
Информационной базой для анализа экономических процессов являются динамические и временные ряды. Совокупность наблюдений некоторого явления (показателя), упорядоченная в зависимости от последовательности значений другого явления (признака), называют динамическим рядом. Динамические ряды, у которых в качестве признака упорядочения используется время, называют временными.
В экономике и бизнесе временные ряды – это очень распространенный тип данных. Во временном ряде содержится информация об особенностях и закономерностях протекания процесса, а статистический анализ позволяет выявить и использовать выявленные закономерности для оценки характеристик процесса в будущем, т.е. для прогнозирования.
Временной ряд – это набор чисел, привязанный к последовательным, обычно равноотстоящим моментам времени. Числа, составляющие временной ряд и получающиеся в результате наблюдения за ходом некоторого процесса, называются уровнями временного ряда или элементами. Под длиной временного ряда понимают количество входящих в него уровней n. Временной ряд обычно обозначают Y(t), или , где t=1,2,…,n.
Временным рядом (ВР) будем называть множество значений некоторой величины в последовательные моменты времени.
Прогнозирование временного ряда - вычисление величины его будущих значений либо характеристик, позволяющих определить эту величину, на основании анализа известных значений. Величина, подлежащая прогнозу, называется прогнозируемой величиной (ПВ).
При прогнозировании предполагается, что значение прогнозируемой величины зависит от каких-либо факторов, назовем их определяющими факторами, или признаками. Один из подходов к задаче прогнозирования основан на предположении зависимости ПВ от предыдущих значений ВР.
Пример графика временного ряда приведен на рис. 3.1.
Р исунок 3.1 - График динамики временного ряда номинальный объем валового внутреннего продукта – квартальные данные
До недавнего времени (середины 80-х годов прошлого века) существовало несколько общепризнанных методов прогнозирования временных рядов:
эконометрические;
регрессионные ;
методы Бокса-Дженкинса (ARIMA, ARMA).
Однако, начиная с конца 80-х годов, в научной литературе был опубликован ряд статей по нейросетевой тематике, в которых был приведен эффективный алгоритм обучения нейронных сетей и доказана возможность их использования для самого широкого круга задач. Одним из самых успешных приложений нейронных сетей было прогнозирование временных рядов. Причем самым массовым было
прогнозирование на финансовых рынках;
прогнозирование продаж.
В настоящее время можно с уверенностью сказать, что использование нейронных сетей при прогнозировании дает ощутимое преимущество по сравнению с более простыми статистическими методами.
Основные описательные статистики для временных рядов.
Среднее и дисперсия временного ряда рассчитываются по формулам:
.
Выборочная автоковариация k-го порядка вычисляется как
Статистической оценкой автокорреляции k-го порядка для стационарных процессов является выборочный коэффициент автокорреляции: . При анализе изменения величин c k и rk в зависимости от значения k обычно пользуются выборочными автоковариационной и автокорреляционной функциями, определяемыми как последовательности и , соответственно. Выборочная автокорреляционная функция играет особую роль в анализе стационарных временных рядов, поскольку может быть использована в качестве инструмента для распознавания типа процесса. При этом обычно анализируют график автокорреляционной функции, называемый коррелограммой.
Стационарным процессом называется такой случайный процесс, вероятностные свойства которого с течением времени не изменяются. Он протекает в приблизительно однородных условиях и имеет вид непрерывных случайных колебаний вокруг некоторого среднего значения. Причем ни средняя амплитуда, ни его частота не обнаруживают с течением времени существенных изменений.
- Інформаційні системи та технології в управлінні методичні вказівки
- 1 Введення до систем підтримки прийняття рішень 4
- 2 Бізнес - прогнозування 25
- 3 Кластерний аналіз в бізнес-аналітиці 43
- 4 Вирішення задач класифікації
- 5 Література 120
- 1 Введение в Системы Поддержки Принятия Решений (сппр)
- 1.1 Определение сппр
- 1.2 Классификация сппр
- 1.3 Архитектура сппр
- 1.4 Анализ данных – основные принципы
- 1.5 Базовые методы анализа
- 1) Online Analytical Processing
- 2) Knowledge Discovery in Databases
- 3) Data Mining
- 1.6 Примеры задач, где применяются методы Data Mining
- 1.7 Программа Deductor – платформа для создания сппр
- 1.8 Контрольные вопросы
- 2 Корреляционный анализ
- 2.1 Теоретические сведения
- 2.3 Задание для самостоятельной работы
- 2.4. Контрольные вопросы
- 3 Бизнес - Прогнозирование
- 3.1 Теоретические сведения
- 3.2 Компьютерные пакеты для решения задач прогнозирования
- 3.3 Временные ряды
- 3.3.1 "Наивные" модели прогнозирования
- 3.3.2 Средние и скользящие средние
- 3.3.3 Моделирование временного ряда
- Ar(p) -авторегрессионая модель порядка p. Модель имеет вид:
- 3.3.4 Нейросетевые модели прогнозирования
- 3.3.6 Предобработка данных
- 3.4 Пример прогнозирования с помощью линейной регрессии
- 3.4.1 Импорт данных из файла
- 3.4.2 Настройка параметров столбцов
- 3.4.3 Расчет автокорреляции столбцов
- 3.4.4 Удаление аномалий
- 3.4.5 Сглаживание данных – удаление шумов
- 3.4.6 Преобразование данных к скользящему окну
- 3.4.7 Прогнозирование с помощью линейной регрессии
- 3.5 Прогнозирование с помощью нейронных сетей
- 3.5.1 Исходные данные
- 3.5.2 Удаление аномалий и сглаживание
- 3.5.3 Обучение нейросети (прогноз на 1 месяц вперед)
- 3.5.4 Построение прогноза
- 3.5.5 Результат
- 3.5.6 Выводы
- 3.6 Задание к лабораторной работе
- 3.7 Контрольные вопросы
- 4 Кластерный анализ в бизнес-аналитике
- 4.1. Теоретические основы
- 4.2 Меры близости в алгоритмах кластеризации
- 4.3 Алгоритмы кластеризации
- 4.4 Решение типовой задачи кластеризации в Deductor
- 4.4.1 Кластеризация
- 4.4.2 Выводы
- 4.6 Задания для самостоятельной работы
- 4.7 Контрольные вопросы
- 5 Методы решения задач классификации
- 5.1 Опис процесу класифікації
- 5.2 Оцінка якості моделі класифікації
- 5.3 Скоринговые модели для оценки кредитоспособности заемщиков – пример задачи классификации на основе логистической регрессии
- 5.3.1 Постановка задачи
- 5.3.2 Скоринговая карта на основе логистической регрессии
- 5.3.3 Построение модели в системе Deductor.
- 5.4 Классификация на основе дерева решений
- 5.4.1 Процесс конструирования дерева решений
- 5.4.2 Скоринговая модель на основе дерева решений
- 5.3.4 Интерактивное дерево решений
- 5. Задания к лабораторной работе
- 5.5 Контрольные вопросы
- 5 Литература