3.3.1 "Наивные" модели прогнозирования
При создании "наивных" моделей предполагается, что некоторый последний период прогнозируемого временного ряда лучше всего описывает будущее этого прогнозируемого ряда, поэтому в этих моделях прогноз, как правило, является очень простой функцией от значений прогнозируемой переменной в недалеком прошлом.
Самой простой моделью является
Y(t+1)=Y(t),
что соответствует предположению, что "завтра будет как сегодня".
Вне всякого сомнения, от такой примитивной модели не стоит ждать большой точности. Она не только не учитывает механизмы, определяющие прогнозируемые данные (этот серьезный недостаток вообще свойственен многим статистическим методам прогнозирования), но и не защищена от случайных флуктуаций, она не учитывает сезонные колебания и тренды. Впрочем, можно строить "наивные" модели несколько по-другому
Y(t+1)=Y(t)+[Y(t)-Y(t-1)],
Y(t+1)=Y(t)*[Y(t)/Y(t-1)],
такими способами мы пытаемся приспособить модель к возможным трендам.
Y(t+1)=Y(t-s), это попытка учесть сезонные колебания
- Інформаційні системи та технології в управлінні методичні вказівки
- 1 Введення до систем підтримки прийняття рішень 4
- 2 Бізнес - прогнозування 25
- 3 Кластерний аналіз в бізнес-аналітиці 43
- 4 Вирішення задач класифікації
- 5 Література 120
- 1 Введение в Системы Поддержки Принятия Решений (сппр)
- 1.1 Определение сппр
- 1.2 Классификация сппр
- 1.3 Архитектура сппр
- 1.4 Анализ данных – основные принципы
- 1.5 Базовые методы анализа
- 1) Online Analytical Processing
- 2) Knowledge Discovery in Databases
- 3) Data Mining
- 1.6 Примеры задач, где применяются методы Data Mining
- 1.7 Программа Deductor – платформа для создания сппр
- 1.8 Контрольные вопросы
- 2 Корреляционный анализ
- 2.1 Теоретические сведения
- 2.3 Задание для самостоятельной работы
- 2.4. Контрольные вопросы
- 3 Бизнес - Прогнозирование
- 3.1 Теоретические сведения
- 3.2 Компьютерные пакеты для решения задач прогнозирования
- 3.3 Временные ряды
- 3.3.1 "Наивные" модели прогнозирования
- 3.3.2 Средние и скользящие средние
- 3.3.3 Моделирование временного ряда
- Ar(p) -авторегрессионая модель порядка p. Модель имеет вид:
- 3.3.4 Нейросетевые модели прогнозирования
- 3.3.6 Предобработка данных
- 3.4 Пример прогнозирования с помощью линейной регрессии
- 3.4.1 Импорт данных из файла
- 3.4.2 Настройка параметров столбцов
- 3.4.3 Расчет автокорреляции столбцов
- 3.4.4 Удаление аномалий
- 3.4.5 Сглаживание данных – удаление шумов
- 3.4.6 Преобразование данных к скользящему окну
- 3.4.7 Прогнозирование с помощью линейной регрессии
- 3.5 Прогнозирование с помощью нейронных сетей
- 3.5.1 Исходные данные
- 3.5.2 Удаление аномалий и сглаживание
- 3.5.3 Обучение нейросети (прогноз на 1 месяц вперед)
- 3.5.4 Построение прогноза
- 3.5.5 Результат
- 3.5.6 Выводы
- 3.6 Задание к лабораторной работе
- 3.7 Контрольные вопросы
- 4 Кластерный анализ в бизнес-аналитике
- 4.1. Теоретические основы
- 4.2 Меры близости в алгоритмах кластеризации
- 4.3 Алгоритмы кластеризации
- 4.4 Решение типовой задачи кластеризации в Deductor
- 4.4.1 Кластеризация
- 4.4.2 Выводы
- 4.6 Задания для самостоятельной работы
- 4.7 Контрольные вопросы
- 5 Методы решения задач классификации
- 5.1 Опис процесу класифікації
- 5.2 Оцінка якості моделі класифікації
- 5.3 Скоринговые модели для оценки кредитоспособности заемщиков – пример задачи классификации на основе логистической регрессии
- 5.3.1 Постановка задачи
- 5.3.2 Скоринговая карта на основе логистической регрессии
- 5.3.3 Построение модели в системе Deductor.
- 5.4 Классификация на основе дерева решений
- 5.4.1 Процесс конструирования дерева решений
- 5.4.2 Скоринговая модель на основе дерева решений
- 5.3.4 Интерактивное дерево решений
- 5. Задания к лабораторной работе
- 5.5 Контрольные вопросы
- 5 Литература