logo search
Материалы по интерфейсам периферий / Для Скрипко / Для пособия ПУ (Восстановлен) (2)

1. Темновой ток

Как уже упоминалось, темновой ток - это результат спонтанной генерации электронно-дырочных пар и есть явление неизбежное, однако бороться с ним можно. Дело в том, что теоретическая величина темнового тока для кремния (если брать в расчёт только прямую генерацию через запрещённую зону) крайне мала, и на самом деле темновой ток в ПЗС (как и обратные токи в других кремниевых приборах) определяется двустадийной генерацией через промежуточные энергетические уровни в запрещённой зоне. Понятно, что чем меньше концентрация этих уровней - а она определяется качеством исходного кремния, чистотой реактивов и степенью совершенства технологии - тем меньше темновой ток. Понятно также, что граница раздела, где этих уровней заведомо много, даёт заметно больший вклад в темновой ток, чем объём. И вот здесь-то и надо вспомнить про МРР-приборы. Их отличие от обычных ПЗС в том, что под одной из тактовых фаз доза канала увеличена, соответственно и потенциал канала при фиксации будет выше. Таким образом, даже если на всех фазах напряжение на затворе таково, что поверхностный потенциал фиксирован, в канале переноса потенциальный рельеф сохраняется, а значит, возможно локализованное накопление зарядовых пакетов. Поверхность же замкнута на подложку и исключается из процесса генерации темнового тока.

В настоящее время типовые значения темнового тока для лучших западных ПЗС составляют при комнатной температуре доли нА/см2, или несколько сотен (иногда тысяч) электронов на ячейку в секунду. И если для вещательного и бытового ТВ (время накопления 20 или 40 мс) такой темновой ток незаметен, то для научных применений, где регистрируются потоки в десяток фотонов на элемент, даже столь низкий темновой ток неприемлем. Действительно, время накопления в малокадровых системах, скажем, флуоресцентной микроскопии достигает минут, а в астрономии, когда нужно получить спектр звезды 20-й величины (совершенно типовое дело), - часов. В этом случае на помощь приходит охлаждение матриц. Как всякий термодинамический процесс, темновой ток сильно зависит от абсолютной температуры; принято считать, что при уменьшении температуры на каждые 7-8 градусов он уменьшается вдвое. Для глубокого охлаждения (в астрономических системах) используются азотные криостаты, где матрицы охлаждаются до -100оС. Для более простых систем применяется термоэлектронное охлаждение с использованием батарей Пельтье, которые способны обеспечить перепад в 70оС при подаче напряжения в 5-6 В, так что температура кристалла при комнатной наружной оказывается около -40оС, а темновой ток снижается до ~1 электрона на ячейку в секунду. Эти батареи столь компактны, что монтируются непосредственно в один корпус вместе с кристаллом ПЗС. Такие охлаждаемые приборы широко выпускаются как в США (например, фирмой SITe Technology или Hamamatsu Photonics) и в Европе (EEV, Великобритания), так и в России (фирма "Электрон-Оптроник", С.-Петербург).

Ну и наконец, в цифровых системах на ПЗС, поскольку характеристика его отличается высокой линейностью, можно просто запоминать темновой сигнал (при данной температуре и данном времени накопления), а затем вычитать его из результирующего.