Суперпарамагнитный предел
- помеха на пути достижения сверхвысокой плотности записи
Пластина современного жесткого диска состоит из стеклянной или алюминиевой подложки с нанесенным сверху магнитным покрытием. Отдельные участки этого покрытия могут быть намагничены одним из двух возможных способов, которые обозначают ноль и единицу (т. е. 1 байт). Такая намагниченная область называется магнитным доменом, и представляет собой миниатюрный магнитик с определенной ориентацией южного и северного магнитных полюсов. Если задать намагниченность домена, информация будет записана. В конечном счете, плотность записи информации определяют размеры этого самого домена. Казалось бы, уменьшайте себе размеры доменов на здоровье, и будут винчестеры такими емкими, какими только можно себе представить, однако не все так просто.
Те из нас, кто не забыл еще школьную физику, могут поднапрячься и вспомнить, что все вещества делятся на парамагнитные, диамагнитные и ферромагнитные. Диамагнитными являются те вещества, которые, находясь вне магнитного поля, не обладают магнитными свойствами - понятно, что для создания накопителей информации они не годятся. Атомы и молекулы парамагнитных веществ, напротив, уже сами по себе, еще до того, как на них начало действовать внешнее магнитное поле, представляют собой элементарные магнитики - однако они тоже мало подходят для создания накопителей. И лишь ферромагнетики, в которых в качестве элементарных магнитиков выступают магнитные зерна достаточно большого размера, подходят для длительного хранения информации.
Чтобы записать один бит информации, головка винчестера создает определенным образом направленное магнитное поле, которое ориентирует все элементарные магнитики домена преимущественно в одном направлении. Эта ориентация благополучно сохраняется в течение длительного времени уже после того, как головка прекратила свое воздействие на ферромагнетик. Однако даже после многократной записи в домене всегда остаются такие магнитные зерна, магнитная ориентация которых не совпадает с ориентацией всего домена; причем относительное содержание "плохих" зерен тем больше, чем меньше зерен в домене, то есть, чем меньше его размер. Если попытаться сделать домен слишком маленьким, то относительное количество "плохих" зерен окажется настолько большим, что информационный сигнал невозможно уже будет выделить на фоне шума. Из сложившейся ситуации существует два выхода - поиск новых парамагнитных материалов с малыми и по преимуществу однородными магнитными зернами и разработка алгоритмов, позволяющих выделять полезный сигнал даже при низком соотношении "сигнал/шум". Однако и тут существует свой предел возможностей. Если магнитное зерно будет слишком малым, то тепловой энергии окружающей среды с лихвой хватит на то, чтобы спонтанно сменить его намагниченность. Грубо говоря, в этом случае мы получим вещество, очень близкое по свойством к парамагнитному - винчестеры, изготовленные из таких материалов, смогут работать лишь при охлаждении жидким азотом или, что еще хуже, жидким гелием. Из-за этого квазиперехода ферромагнитного вещества в парамагнитное описанное ограничение и получило название суперпарамагнитного предела.
Ну и помимо чисто физического ограничения в виде суперпарамагнитного предела существует еще и техническое, связанное с процессом записи и чтения информации, для которого, как уже упоминалось, используется специальная головка. В самых первых моделях винчестеров головка была универсальной - одна и та же малюсенькая катушка индуктивности использовалась как для чтения, так и для записи информации. Современные головки состоят из двух частей: записывающей (катушки индуктивности) и читающей (магниторезистивной головки, изменяющей свое сопротивление в зависимости от напряженности магнитного поля). Естественно, размеры головки конечны, и сегодня именно они во многом определяют размеры минимальной намагничиваемой области - домена. Однако в современных винчестерах размер домена настолько мал, что для дальнейшего его уменьшения производителям потребуется перешагнуть через суперпарамагнитный предел.
Именно поэтому специалисты ведущих компаний, разрабатывающих жесткие диски, уже давно бьются над возникшей проблемой, и надо сказать, весьма успешно. Пути развития технологий и собственные ноу-хау, позволяющие в будущем преодолеть суперпарамагнитный предел, разработаны каждой из них. Причем некоторые уже применяются при серийном производстве винчестеров, некоторые используются только в опытных образцах, но со дня на день будут использоваться и при конвейерной сборке, некоторые, возможно, так никогда и не доберутся до массового использования.
AFC
Пожалуй, первой ласточкой, предвещавшей скорую победу над суперпарамагнитным пределом, явилась технология создания магнитно-компенсированных пленок, предложенная фирмой IBM. Суть идеи заключается в нанесении на диск винчестера трехслойного антиферромагнитного покрытия под названием AFC (antiferromagnetically-coupled, антиферромагнитная пара), в котором пара магнитных слоев разделена специальной изолирующей прослойкой из рутения.
За счет того что расположенные друг под другом магнитные домены имеют антипараллельную ориентацию магнитного поля, они образуют пару, которая оказывается более устойчивой к спонтанному перемагничиванию, чем одиночный "плоский" домен. Пробные партии винчестеров, использующих технологию AFC, появились в 2001 году, но массовое ее использование началось только сейчас. Однако AFC не является абсолютной панацеей - это лишь маленькое усовершенствование старой технологии, позволяющее увеличить емкость винчестеров в 4-8 раз, но не больше.
PMR
Существенно больший выигрыш сулит применение перпендикулярной записи (PMR, Perpendicular Magnetic Recording). Эта технология известна достаточно давно, ее исследованиями активно занимались уже лет 20-30 назад, однако довести дело до работающего и недорогого в производстве устройства тогда не получилось. Сейчас о PMR вновь вспомнили, разработкой новых жестких дисков на основе этой технологии весьма плодотворно занимается компания Seagate. В августе 2002 года в Питтсбурге (США) ею был организован специальный научный центр, в планы которого входило тщательное исследование не только PMR, но и других проблем, связанных с созданием перспективных накопителей информации на магнитных носителях. Как следует из названия, PMR, в отличие от классической технологии записи, использует магнитные домены с перпендикулярным (а не параллельным поверхности диска) магнитным полем.
Это позволяет уменьшить продольные размеры домена, слегка увеличив при этом его высоту. Кроме того, в случае PMR соседние инвертные биты (1 и 0) уже не глядят друг на друга одноименными полюсами, которые, как известно, отталкиваются, - это позволяет уменьшить размер междоменного пространства, по сравнению с классической технологией записи, что еще больше увеличивает емкость винчестеров.
Понятно, что для реализации PMR необходимо применять как совершенно иную конструкцию головки чтения/записи, так и новую структуру магнитной поверхности диска. Головка, записывающая методом PMR, должна иметь всего один основной полюс сердечника, второй полюс будет вспомогательным. Основной полюс сердечника создает сильное магнитное поле, линии которого выходят перпендикулярно магнитной поверхности диска; проходя через специальный внутренний магнитный слой, они замыкаются на широком вспомогательном полюсе сердечника. Естественно, наиболее сильное по величине поле будет у основного полюса - там и будет происходить перемагничивание домена, у широкого вспомогательного полюса поле будет слишком слабое, чтобы воздействовать на поверхность диска, и она при записи останется без изменений. Так же как и AFC, PMR - это технология уже готовая к применению в серийном производстве. Использующие ее винчестеры должны появиться если не в этом, то в следующем 2005 году.
- Технические средства информатизации
- Тема 1.1. Информация: основные определения и понятия
- 1.1.1. Информация: основные определения и понятия
- Тема 1.2. Определение и классификация технических средств информатизации (тси)
- Тема 1.3. Общие сведения о представлении данных
- Тема 1.4. Представление текстовых и числовых данных
- Тема 1.5. Представление мультимедийных данных
- Введение к модулю 2
- Тема 2.1. Классификация эвм
- Тема 2.2. Общая характеристика конструкции и устройства эвм
- Тема 2.3. Характеристики эвм
- Тема 2.4. Архитектура персональных эвм
- Введение к модулю 3
- Тема 3.1. Устройство и составные элементы crt-монитора
- Тема 3.2. Типы масок в crt-мониторах
- Тема 3.3. Характеристики crt-монитора
- Тема 3.4. Активные и пассивные жидкокристаллические матрицы
- Тема 3.5. Устройство lcd-монитора с активной матрицей
- Тема 3.6. Устройство видеоадаптера
- Тема 3.7. Основные характеристики видеоадаптеров и технология sli
- Тема 3.8. Технологии создания графических эффектов
- Введение к модулю 4
- Тема 4.1. Классификация печатающих устройств и механические печатающие устройства
- Тема 4.2. Печатающие устройства с термопереносом красителя
- Тема 4.3. Современные технологии струйной печати
- Тема 4.4. Устройство печатающего узла струйного принтера
- Тема 4.5. Принцип электростатической фотографии
- Тема 4.6. Устройство лазерных и светодиодных принтеров
- Тема 4.7. Классификация копировальных аппаратов
- Тема 4.8. Устройство копировального аппарата
- Введение к модулю 5
- Тема 5.1. Классификация сканеров
- Тема 5.2. Устройство планшетного сканера
- Тема 5.3. Основные этапы работы планшетного сканера
- Тема 5.4. Характеристики сканера
- Пзс: прецизионный взгляд на мир
- 1. Темновой ток
- 2. Неоднородность чувствительности
- 3. Шумы
- Тема 5.5. Общие сведения об устройстве цифровых фотокамер
- Тема 5.6. Оптическая система цифровой фотокамеры
- Тема 5.7. Основные параметры цифровой фотокамеры
- Тема 5.8. Общие сведения о дигитайзерах и графических планшетах
- Тема 5.9. Принцип работы графического планшета и его характеристики
- Тема 5.10. Разновидности 3-х мерных дигитайзеров
- Введение к модулю 6
- Тема 6.1. Виды памяти в технических средствах информатизации
- Тема 6.2. Устройства внутренней памяти технических средств информатизации
- Тема 6.3. Устройства внешней памяти
- Тема 6.4. Общие сведения о внешних оптических носителях памяти и устройство привода для чтения носителей cd-rom
- Тема 6.5. Структура носителей cd и dvd
- Тема 6.6. Перспективные технологии внешних оптических носителей данных
- Тема 6.7. Разновидности Flash-памяти и принцип хранения данных
- Тема 6.8. Разновидности сменных карт Flash-памяти
- Тема 6.9. Накопители Flash-памяти с usb интерфейсом
- Будущее накопителей информации. Часть 1. Жесткие диски
- Тенденции развития магнитных накопителей информации
- Суперпарамагнитный предел
- Hamr и soma - технологии 2010 года
- Вместо заключения
- Будущее накопителей информации. Часть 2. Ее величество оптика
- Blue Ray vs hd-dvd
- Многослойные оптические диски
- Голографическая память
- Вместо заключения
- Введение к модулю 7
- Тема 7.1. Этапы обработки звуковых данных
- Тема 7.2. Устройство звуковой карты
- Тема 7.3. Классификация и характеристики звуковых карт
- Тема 7.4. Форматы источников видеосигналов для устройств обработки
- Тема 7.5. Карты оцифровки видео
- Тема 7.6. Методы сжатия видеоданных
- Тема 7.7. Способы монтажа видеоданных
- Типы и характеристики интерфейсов
- Архитектура системных интерфейсов
- Системные интерфейсы для пк на основе Intel-386 и Intel-486
- Интерфейс pci
- Порт agp
- Pci Express
- Интерфейсы накопителей
- Вопросы для самоконтроля
- Технология Bluetooth– как способ беспроводной передачи информации.
- О плохом. Безопасность.
- Ieee-1394 (FireWire) Введение и история создания
- Технические характеристики
- Топология
- Новые модификации ieee 1394
- Повышение эффективности
- Что дальше? 1394b
- Разъёмы
- Знакомьтесь, Bus Owner/Supervisor/Selector. Или просто boss
- Заключение
- FireWire 800 против всех: сравнение стандартов ieee-1394b, ieee-1394a, usb 2.0, ata-133 и Serial ata 150
- Струйная печать с твердыми чернилами (со сменой фаз)
- Пузырьковая струйная печать (bubble-jet)
- Пьезоэлектрическая струйная печать Физические основы пьезоэлектроники
- Технологии сканирования изображений. Классификация сканеров, основные характеристики сканеров.
- Планшетные сканеры.
- Барабанные сканеры.
- Штриховые коды. Сканеры штриховых кодов.
- Плазменные дисплеи, основные характеристики, достоинства и недостатки. Устройство и принцип работы ячейки плазменного дисплея.
- История жёстких дисков.
- Физические основы записи и чтения информации
- Схемы записи и воспроизведения
- Представление цифровой информации на внешнем носителе
- Структура накопителя на жестких магнитных дисках
- Метод записи данных на жесткий магнитный диск
- Формат записи информации на жестком магнитном диске
- Адаптер накопителей на жестких магнитных дисках
- Стандарты usb интерфейсов:
- Основные технические характеристики и преимущество интерфейса usb:
- Часть 1.
- Часть 2
- Часть 1
- Часть 2
- Часть 1
- Часть 2
- Часть 1
- Часть 2
- Клавиатуры
- Расширенные 101- клавиатуры
- 104-Клавишная Windows-клавиатура
- Портативные клавиатуры
- Индикатор Num Lock
- Устройство клавиатуры
- Конструкции клавиш
- Механические переключатели
- Замыкающие накладки
- Резиновые колпачки
- Мембранная клавиатура
- Интерфейс клавиатуры
- Автоматическое повторение
- Настройка параметров автоматического повторения в Windows
- Номера клавиш и скан-коды
- Международные раскладки клавиатуры и языки
- Разъемы для подключения клавиатуры и мыши
- Клавиатуры и мыши для порта usb
- Клавиатуры с дополнительными функциональными возможностями
- Эргономичные клавиатуры
- Беспроводные клавиатуры
- Поиск неисправностей и ремонт клавиатуры
- Как разобрать клавиатуру
- Чистка клавиатуры
- Замена клавиатуры
- Интерфейсы мыши
- Последовательная мышь
- Порт мыши на системной плате (ps/2)
- Комбинированная мышь
- Шинная мышь
- Поиск неисправностей
- Чистка мыши
- Конфликты, вызванные прерываниями
- Драйвер мыши
- Проблемы при работе с прикладными программами
- IntelliMouse фирмы Microsoft
- Устройство TrackPoint II/III
- Устройство Glidepoint/Track Pads
- Введение в порты ввода-вывода
- Последовательные порты
- Микросхема uart
- Высокоскоростные последовательные порты
- Конфигурация последовательных портов
- Тестирование последовательных портов
- Программа Microsoft Diagnostics (msd)
- Диагностика в Windows 9x
- Тестирование с замыканием петли
- Параллельные порты
- Стандарт ieee 1284
- Стандартные параллельные порты
- Двунаправленные порты (8-разрядные)
- Усовершенствованный параллельный порт (ерр)
- Порт с расширенными возможностями (еср)
- Обновление параллельного порта для работы в режимах ерр и еср
- Конфигурация параллельных портов
- Устройства, подключаемые к параллельным портам
- Преобразователи "параллельный порт-scsi"
- Тестирование параллельных портов
- Usb и 1394 (I.Link) FireWire - новые интерфейсы ввода-вывода
- Универсальная последовательная шина usb
- Usb 2.0
- Адаптеры usb
- Компьютеры типа legacy-free
- Ieee-1394 (FireWire или I.Link)
- Магнитооптическая технология
- Цены и производительность
- Сравнение магнитооптических и магнитных накопителей
- Флэш-карты
- Как работает флэш-память
- Типы устройств флэш-памяти
- CompactFlash
- SmartMedia
- Ата-совместимая pc Card (pcmcia)
- Sony MemoryStick
- Сравнение устройств флэш-памяти
- Перемещение устройств флэш-памяти из камеры в компьютер
- Устройства считывания с карт флэш-памяти
- Адаптеры типа pc Card II
- Адаптеры в виде дискеты
- Альтернативы флэш-памяти
- Хранение данных на магнитных носителях
- История развития устройств хранения данных на магнитных носителях
- Как магнитное поле используется для хранения данных
- Конструкции головок чтения/записи
- Ферритовые головки
- Тонкопленочные головки
- Головки с металлом в зазоре
- Магниторезистивные головки
- Гигантские магниторезистивные головки
- Ползунок
- Способы кодирования данных
- Частотная модуляция (fm)
- Модифицированная частотная модуляция (mfm)
- Кодирование с ограничением длины поля записи (rll)
- Сравнение способов кодирования
- Декодеры prml (Partial-Response, Maximum-Likelihood)
- Измерение емкости накопителя
- Поверхностная плотность записи
- 1 Частотная модуляция в кодировании информации для магнитных носителей
- Fm кодирование
- Mfm кодирование
- Кодирование с ограничением длины поля записи
- Rll-кодирование
- Prml-кодирование
- Головки чтения/записи
- Функционирование магнитных головок чтения/записи
- Количество головок чтения записи
- Фазовые переходы цикла Записи Данных: