Тема 3.6. Устройство видеоадаптера
Практически все современные видеоадаптеры состоят из следующих основных компонент:
видеопамять;
графический процессор (набор микросхем);
интерфейс ввода-вывода;
тактовые генераторы.
Основное назначение видеопамяти – временное хранение выводимого на экран монитора изображения. Поскольку каждое изображение имеет определенный объём памяти, который измеряется в байтах, это также относится и к графике, выводимой на экран монитора, то для получения какого-либо изображения на экране его необходимо предварительно разместить в видеопамяти. Следовательно, чем больше объем этой памяти, тем большее разрешение и глубину цвета можно отобразить на мониторе. Та часть видеопамяти, которая используется для хранения выводимого изображения, называется кадровым буфером (фрейм буфером, Frame Buffer).
Предельные минимальные размеры кадрового буфера видеокарты для различных разрешений экрана монитора и глубины цвета приведены в таб. 3.6.1. Из таб. 3.6.1 следует, что для отображения графического образа на экране монитора с разрешением 1280×1024 при глубине цвета 16 бит размер кадрового буфера должен быть не менее 2.5 Мб. При увеличении глубины цвета до 32 бит размер кадрового буфера должен быть не менее 5 Мб.
Вместе с тем также из таб. 3.6.1 можно проследить, что, обладая кадровым буфера 2 Мб, можно установить разрешение 800×600 при глубине цвета 32 бит, в то же время, уменьшив глубину цвета до 16 бит, можно увеличить разрешение экрана до 1280×768.
Таблица 3.6.1. Зависимость объема видеопамяти от параметров монитора
№ п/п | Разрешение экрана | Объем памяти, Мб, при глубине цвета | ||
16 бит | 24 бит | 32 бит | ||
1. | 800×600 | 0.9 | 1.4 | 1.8 |
2. | 1024×768 | 1.5 | 2.3 | 3.0 |
3. | 1152×864 | 1.9 | 2.8 | 3.8 |
4. | 1280×720 | 1.8 | 2.6 | 3.5 |
5. | 1280×768 | 1.9 | 2.8 | 3.8 |
6. | 1280×960 | 2.3 | 3.5 | 4.7 |
7. | 1280×1024 | 2.5 | 3.8 | 5.0 |
В современных видеоадаптерах используется память нового открытого стандарта GDDR-3, разработка которой была начата компанией ATI в 2002 г.
Традиционно названия поколений памяти для графических адаптеров соответствовали типам памяти для персональных компьютеров: GDDR-1 соответствовала DDR первого поколения, a GDDR-2 – появившейся в 2004 году DDR-2. Однако архитектурно GDDR-3 практически не отличается от GDDR-2 (и соответственно DDR-2) – данные по-прежнему передаются по двум фронтам сигнала, а эффективная пропускная способность вчетверо превосходит пропускную способность банка памяти. Основное отличие GDDR-3 от GDDR-2 – в напряжении питания, сниженном с 2.5 до 1.8 В. Это позволило значительно снизить уровень тепловыделения, являющийся главным недостатком GDDR-2. Кроме того, была модернизирована архитектура микросхем, что позволило увеличить тактовую частоту шины памяти. В настоящее время максимальная эффективная частота шины при применении памяти GDDR-З может достигать 1.6 ГГц.
Характеристика микросхем памяти для видеоадаптеров приведена в таб. 3.6.2.
Таблица 3.6.2. Характеристика микросхем памяти
Тип памяти | Напряжение питания, В | Тактовая частота шины, МГц | Максимальная эффективная частота шины, ГГц | Задержки чтения, такт |
GDDR-1 | 2.5 | 183-500 | 1 | 3,4,5 |
GDDR-2 | 2.5 | 400-500 | 1 | 5,6,7 |
GDDR-3 | 1.8 | 500-800 | 1,6 | 5,6,7 |
Объем видеопамяти является важным параметром видеоадаптера, оказывающим влияние не только на качество работы видеоподсистемы компьютера, но и на стоимость видеоадаптера. Поэтому, производители видеоадаптеров обычно выпускает целую линейку видеоадаптеров, различающихся объемом видеопамяти и рассчитанных на различные сегменты рынка. Наибольшее распространение получили видеоадаптеры с объемами видеопамяти 32, 64, 128 Мб, также известны видеоадаптеры с 256 Мб видеопамяти.
Необходимо учитывать, что, несмотря на то, что объем видеопамяти очень важный параметр, оценивать видеоадаптер только по этому показателю при современных технологиях воспроизведения графики некорректно.
Следующий компонент видеоадаптера – графический процессор, представляющий собой набор микросхем видеосистемы. Раньше этот набор состоял из нескольких микросхем, в настоящее время эти микросхемы объединены в одну – графический процессор. Именно на тип графического процессора следует обращать внимание, в первую очередь, при выборе видеоадаптера, поскольку в нем заложены потенциальные возможности видеоадаптера.
Развитие рынка графических процессоров неразрывно связано с развитием индустрии компьютерных игр: именно появление новых игровых программ с более реалистичной графикой, требующих все более мощных вычислительных средств, стимулирует приобретение новых графических адаптеров. Каждый современный графический процессор (ГП) имеет средства ускорения расчета трехмерной графики, но на деле востребованы они далеко не во всех ПК.
Одним из факторов динамичного развития ГП, несомненно, является бескомпромиссная конкуренция двух крупнейших изготовителей ГП – компаний ATI и NVIDIA.
В 2002 г. каждая компания представила третье поколение графических процессоров (R3xx и NV3x у ATI и NVIDIA соответственно), старшая модель в котором имела в индексе число 700 (RADEON 9700 и GeForce FX 5700), а средняя – 500 (9500 и 5500). Впоследствии появились процессоры семейства "три с половиной" (R35x и NV35). Старшие модели получили обозначения с числом 800 (RADEON 9800 и GeForce FX 5800), средние – 600 (9600 и 5600), а младшие – 200 (9200 и 5200). В 2004 г. обе компании разработали новые семейства графических процессоров – R4xx и NV4x. На рис. 3.6.1 показаны ГП четвертого поколения NVIDIA GeForce 6800 и ATI RADEON X800.
Рисунок 3.6.1.
- Технические средства информатизации
- Тема 1.1. Информация: основные определения и понятия
- 1.1.1. Информация: основные определения и понятия
- Тема 1.2. Определение и классификация технических средств информатизации (тси)
- Тема 1.3. Общие сведения о представлении данных
- Тема 1.4. Представление текстовых и числовых данных
- Тема 1.5. Представление мультимедийных данных
- Введение к модулю 2
- Тема 2.1. Классификация эвм
- Тема 2.2. Общая характеристика конструкции и устройства эвм
- Тема 2.3. Характеристики эвм
- Тема 2.4. Архитектура персональных эвм
- Введение к модулю 3
- Тема 3.1. Устройство и составные элементы crt-монитора
- Тема 3.2. Типы масок в crt-мониторах
- Тема 3.3. Характеристики crt-монитора
- Тема 3.4. Активные и пассивные жидкокристаллические матрицы
- Тема 3.5. Устройство lcd-монитора с активной матрицей
- Тема 3.6. Устройство видеоадаптера
- Тема 3.7. Основные характеристики видеоадаптеров и технология sli
- Тема 3.8. Технологии создания графических эффектов
- Введение к модулю 4
- Тема 4.1. Классификация печатающих устройств и механические печатающие устройства
- Тема 4.2. Печатающие устройства с термопереносом красителя
- Тема 4.3. Современные технологии струйной печати
- Тема 4.4. Устройство печатающего узла струйного принтера
- Тема 4.5. Принцип электростатической фотографии
- Тема 4.6. Устройство лазерных и светодиодных принтеров
- Тема 4.7. Классификация копировальных аппаратов
- Тема 4.8. Устройство копировального аппарата
- Введение к модулю 5
- Тема 5.1. Классификация сканеров
- Тема 5.2. Устройство планшетного сканера
- Тема 5.3. Основные этапы работы планшетного сканера
- Тема 5.4. Характеристики сканера
- Пзс: прецизионный взгляд на мир
- 1. Темновой ток
- 2. Неоднородность чувствительности
- 3. Шумы
- Тема 5.5. Общие сведения об устройстве цифровых фотокамер
- Тема 5.6. Оптическая система цифровой фотокамеры
- Тема 5.7. Основные параметры цифровой фотокамеры
- Тема 5.8. Общие сведения о дигитайзерах и графических планшетах
- Тема 5.9. Принцип работы графического планшета и его характеристики
- Тема 5.10. Разновидности 3-х мерных дигитайзеров
- Введение к модулю 6
- Тема 6.1. Виды памяти в технических средствах информатизации
- Тема 6.2. Устройства внутренней памяти технических средств информатизации
- Тема 6.3. Устройства внешней памяти
- Тема 6.4. Общие сведения о внешних оптических носителях памяти и устройство привода для чтения носителей cd-rom
- Тема 6.5. Структура носителей cd и dvd
- Тема 6.6. Перспективные технологии внешних оптических носителей данных
- Тема 6.7. Разновидности Flash-памяти и принцип хранения данных
- Тема 6.8. Разновидности сменных карт Flash-памяти
- Тема 6.9. Накопители Flash-памяти с usb интерфейсом
- Будущее накопителей информации. Часть 1. Жесткие диски
- Тенденции развития магнитных накопителей информации
- Суперпарамагнитный предел
- Hamr и soma - технологии 2010 года
- Вместо заключения
- Будущее накопителей информации. Часть 2. Ее величество оптика
- Blue Ray vs hd-dvd
- Многослойные оптические диски
- Голографическая память
- Вместо заключения
- Введение к модулю 7
- Тема 7.1. Этапы обработки звуковых данных
- Тема 7.2. Устройство звуковой карты
- Тема 7.3. Классификация и характеристики звуковых карт
- Тема 7.4. Форматы источников видеосигналов для устройств обработки
- Тема 7.5. Карты оцифровки видео
- Тема 7.6. Методы сжатия видеоданных
- Тема 7.7. Способы монтажа видеоданных
- Типы и характеристики интерфейсов
- Архитектура системных интерфейсов
- Системные интерфейсы для пк на основе Intel-386 и Intel-486
- Интерфейс pci
- Порт agp
- Pci Express
- Интерфейсы накопителей
- Вопросы для самоконтроля
- Технология Bluetooth– как способ беспроводной передачи информации.
- О плохом. Безопасность.
- Ieee-1394 (FireWire) Введение и история создания
- Технические характеристики
- Топология
- Новые модификации ieee 1394
- Повышение эффективности
- Что дальше? 1394b
- Разъёмы
- Знакомьтесь, Bus Owner/Supervisor/Selector. Или просто boss
- Заключение
- FireWire 800 против всех: сравнение стандартов ieee-1394b, ieee-1394a, usb 2.0, ata-133 и Serial ata 150
- Струйная печать с твердыми чернилами (со сменой фаз)
- Пузырьковая струйная печать (bubble-jet)
- Пьезоэлектрическая струйная печать Физические основы пьезоэлектроники
- Технологии сканирования изображений. Классификация сканеров, основные характеристики сканеров.
- Планшетные сканеры.
- Барабанные сканеры.
- Штриховые коды. Сканеры штриховых кодов.
- Плазменные дисплеи, основные характеристики, достоинства и недостатки. Устройство и принцип работы ячейки плазменного дисплея.
- История жёстких дисков.
- Физические основы записи и чтения информации
- Схемы записи и воспроизведения
- Представление цифровой информации на внешнем носителе
- Структура накопителя на жестких магнитных дисках
- Метод записи данных на жесткий магнитный диск
- Формат записи информации на жестком магнитном диске
- Адаптер накопителей на жестких магнитных дисках
- Стандарты usb интерфейсов:
- Основные технические характеристики и преимущество интерфейса usb:
- Часть 1.
- Часть 2
- Часть 1
- Часть 2
- Часть 1
- Часть 2
- Часть 1
- Часть 2
- Клавиатуры
- Расширенные 101- клавиатуры
- 104-Клавишная Windows-клавиатура
- Портативные клавиатуры
- Индикатор Num Lock
- Устройство клавиатуры
- Конструкции клавиш
- Механические переключатели
- Замыкающие накладки
- Резиновые колпачки
- Мембранная клавиатура
- Интерфейс клавиатуры
- Автоматическое повторение
- Настройка параметров автоматического повторения в Windows
- Номера клавиш и скан-коды
- Международные раскладки клавиатуры и языки
- Разъемы для подключения клавиатуры и мыши
- Клавиатуры и мыши для порта usb
- Клавиатуры с дополнительными функциональными возможностями
- Эргономичные клавиатуры
- Беспроводные клавиатуры
- Поиск неисправностей и ремонт клавиатуры
- Как разобрать клавиатуру
- Чистка клавиатуры
- Замена клавиатуры
- Интерфейсы мыши
- Последовательная мышь
- Порт мыши на системной плате (ps/2)
- Комбинированная мышь
- Шинная мышь
- Поиск неисправностей
- Чистка мыши
- Конфликты, вызванные прерываниями
- Драйвер мыши
- Проблемы при работе с прикладными программами
- IntelliMouse фирмы Microsoft
- Устройство TrackPoint II/III
- Устройство Glidepoint/Track Pads
- Введение в порты ввода-вывода
- Последовательные порты
- Микросхема uart
- Высокоскоростные последовательные порты
- Конфигурация последовательных портов
- Тестирование последовательных портов
- Программа Microsoft Diagnostics (msd)
- Диагностика в Windows 9x
- Тестирование с замыканием петли
- Параллельные порты
- Стандарт ieee 1284
- Стандартные параллельные порты
- Двунаправленные порты (8-разрядные)
- Усовершенствованный параллельный порт (ерр)
- Порт с расширенными возможностями (еср)
- Обновление параллельного порта для работы в режимах ерр и еср
- Конфигурация параллельных портов
- Устройства, подключаемые к параллельным портам
- Преобразователи "параллельный порт-scsi"
- Тестирование параллельных портов
- Usb и 1394 (I.Link) FireWire - новые интерфейсы ввода-вывода
- Универсальная последовательная шина usb
- Usb 2.0
- Адаптеры usb
- Компьютеры типа legacy-free
- Ieee-1394 (FireWire или I.Link)
- Магнитооптическая технология
- Цены и производительность
- Сравнение магнитооптических и магнитных накопителей
- Флэш-карты
- Как работает флэш-память
- Типы устройств флэш-памяти
- CompactFlash
- SmartMedia
- Ата-совместимая pc Card (pcmcia)
- Sony MemoryStick
- Сравнение устройств флэш-памяти
- Перемещение устройств флэш-памяти из камеры в компьютер
- Устройства считывания с карт флэш-памяти
- Адаптеры типа pc Card II
- Адаптеры в виде дискеты
- Альтернативы флэш-памяти
- Хранение данных на магнитных носителях
- История развития устройств хранения данных на магнитных носителях
- Как магнитное поле используется для хранения данных
- Конструкции головок чтения/записи
- Ферритовые головки
- Тонкопленочные головки
- Головки с металлом в зазоре
- Магниторезистивные головки
- Гигантские магниторезистивные головки
- Ползунок
- Способы кодирования данных
- Частотная модуляция (fm)
- Модифицированная частотная модуляция (mfm)
- Кодирование с ограничением длины поля записи (rll)
- Сравнение способов кодирования
- Декодеры prml (Partial-Response, Maximum-Likelihood)
- Измерение емкости накопителя
- Поверхностная плотность записи
- 1 Частотная модуляция в кодировании информации для магнитных носителей
- Fm кодирование
- Mfm кодирование
- Кодирование с ограничением длины поля записи
- Rll-кодирование
- Prml-кодирование
- Головки чтения/записи
- Функционирование магнитных головок чтения/записи
- Количество головок чтения записи
- Фазовые переходы цикла Записи Данных: