Тема 1.5. Представление мультимедийных данных
Как и любые другие виды данных, графические данные хранятся, обрабатываются и передаются в закодированном двоичном коде, т.е. в виде большого числа бит – нулей и единиц.
Существуют два принципиально разных подхода к представлению (оцифровке) графических данных:
растровый;
векторный.
Для оцифровки графических изображений при растровом представлении вся область данных разбивается на множество точечных элементов – пикселей, каждый из которых имеет свой цвет. Совокупность пикселей называется растром, а изображения, которые формируются на основе растра, называются растровыми.
Число пикселей по горизонтали и вертикали изображения определяет разрешение изображения. Стандартными являются значения 640×480, 800×600, 1024×768, 1280×1024 и др. Каждый пиксель нумеруется, начиная с нуля, слева направо и сверху вниз. Пример представления треугольной области растровым способом показан на рис. 1.5.1.
Рисунок 1.5.1.
Очевидно, что чем больше разрешение, тем точнее будут формироваться графические контуры, при этом естественно возрастает количество пикселей. Увеличение разрешения по горизонтали и вертикали в два раза приводит к увеличению числа пикселей в четыре раза.
При растровом способе представления графических данных под каждый пиксель отводится определенное число бит, называемое битовой глубиной и используемой для кодировки цвета пикселя. Каждому цвету соответствует определенный двоичный код (т.е. код из нулей и единиц).
Например, если битовая глубина равна 1, то под каждый пиксель отводится 1 бит. В этом случае 0 соответствует черному цвету, 1 – белому, а изображение может быть только черно-белым. Если битовая глубина равна 4, то каждый пиксель может быть закодирован цветовой гаммой из 16 цветов (24). При битовой глубине 8 каждый пиксель кодируется одним байтом, при этом количество цветов – 256. Вполне естественно, что с увеличением глубины цвета увеличивается объем памяти, необходимой для хранения графических данных.
Основным недостатком растровой графики является большой объем памяти, требуемый для хранения изображения. Это объясняется тем, что запоминается цвет каждого пикселя, общее число которых определяется заданным разрешением, определяющим качество представления графических данных.
При векторном представлении графических данных задается и впоследствии сохраняется математическое описание каждого графического примитива – геометрического объекта (отрезка, окружности, прямоугольника и т.п.), из которых формируется изображение. Например, для воспроизведения окружности достаточно запомнить положение ее центра, радиус, толщину и цвет линии. Благодаря этому, для хранения векторных графических данных требуется значительно меньше памяти.
Основным недостатком векторной графики является невозможность работы с высококачественными художественными изображениями, фотографиями и фильмами, поэтому основной сферой применения векторной графики является представление в электронном виде чертежей, схем, диаграмм и т.п.
Представление звуковых данных
Слуховой аппарат человека способен различать частотные составляющие звука в среднем в пределах от 20 Гц до ~20 КГц, причем верхняя граница может колебаться в зависимости от возраста и других факторов Звуковая волна, воспринимаемая человеком, представляет собой сложную функцию зависимости амплитуды волны от времени. Сложность этой функции не позволяет задать ее точно математическим выражением или каким-то другим способом для запоминания и обработки в ТСИ. Поэтому звуковая волна представляется путем запоминания значений ее амплитуды в дискретные моменты времени.
Аналоговый (непрерывный) звук представляется в аналоговой аппаратуре непрерывным электрическим сигналом. ТСИ и, в частности, компьютер, оперирует с данными в цифровом виде, т.е. звук в компьютере представляется в цифровом виде.
Цифровой звук – это способ представления электрического сигнала посредством дискретных численных значений его амплитуды.
Оцифровка сигнала включает в себя два процесса – процесс дискретизации (осуществление выборки) и процесс квантования.
Процесс дискретизации (рис. 1.5.2) – это процесс получения значений величин преобразуемого сигнала в определенные промежутки времени.
Квантование (рис. 1.5.3) – процесс замены реальных значений сигнала приближенными с определенной точностью.
Рисунок 1.5.2.
Рисунок 1.5.3.
Таким образом, оцифровка звука – это фиксация амплитуды сигнала через определенные промежутки времени и регистрация полученных значений амплитуды в виде округленных цифровых значений (так как значения амплитуды являются величиной непрерывной, нет возможности конечным числом записать точное значение амплитуды сигнала, именно поэтому прибегают к округлению).
Записанные значения амплитуды сигнала называются отсчетами. Очевидно, что чем чаще брать отсчеты амплитуды (т.е. чем выше частота дискретизации) и чем меньше округлять полученные значения амплитуды (т.е. чем больше уровней квантования), тем более точным будет представление звукового сигнала. При этом существенно возрастет объем хранимой информации. В связи с этим существует проблема выбора между качеством представления сигнала и занимаемым им объемом в оцифрованном виде.
При решении этой проблемы следует руководствоваться известной теоремой Котельникова, согласно которой частота дискретизации устанавливает верхнюю границу частот оцифрованного сигнала, а именно, максимальная частота спектральных составляющих равна половине частоты дискретизации сигнала. Например, чтобы получить полную информацию о звуке в частотной полосе до 22050 Гц, частота дискретизации должна быть не менее 44.1 КГц.
Именно поэтому с учетом возможностей слухового аппарата человека стандартные параметры записи аудио компакт-дисков следующие: частота дискретизации – 44.1 КГц, уровень квантования – 16 бит. Это соответствует 65536 (216) уровням квантования амплитуды при взятии ее значений 44100 раз в секунду.
Для преобразования дискретного (цифрового) сигнала в аналоговый вид, пригодный для обработки аналоговыми устройствами (усилителями и фильтрами) и последующего воспроизведения через акустические системы, служит цифроаналоговый преобразователь (ЦАП). Процесс преобразования представляет собой обратный процесс дискретизации: зная информацию о величине отсчетов (амплитуды сигнала) и используя определенное количество отсчетов в единицу времени, путем интерполирования происходит восстановление исходного сигнала (рис. 1.5.4).
Рисунок 1.5.4.
Представление видеоданных
В наиболее общем и простом случае видеоданные могут быть представлены в цифровом виде как последовательность сменяющих друг друга с определенной скоростью графических образов, соответствующих содержанию видеоряда. Например, стандарт SIF представляет видеосигнал 30 кадрами в секунду с разрешением каждого кадра 352×240 пикселей, а урезанный формат PAL/SECAM – 25 кадров в секунду с разрешением 352×288 пикселей (полноценный стандарт PAL/SECAM имеет параметры в 4 раза больше).
Типичный размер кадра для DVD-фильма в видеостандарте PAL/SECAM составляет 720×576 пикселей при 25 кадрах в секунду и 640×480 пикселей при 30 кадрах в секунду в стандарте NTSC.
Очевидно, что представление видеоданных связано с проблемой аналогичной той, которая возникает при представлении звуковых данных – большим объемом хранимой информации.
Для разрешения этой проблемы при оцифровке видео используются алгоритмы сжатия (кодирования) видеоданных. При кодировании исходного видеоизображения кодек (программа сжатия) выявляет и сохраняет ключевые кадры, на которых происходит смена сюжета. А вместо сохранения промежуточных кадров прогнозирует и сохраняет лишь информацию об изменениях в текущем кадре по отношению к предыдущему.
Наиболее известными алгоритмами сжатия является семейство алгоритмов MPEG (MPEG 1, MPEG 2, MPEG 4).
- Технические средства информатизации
- Тема 1.1. Информация: основные определения и понятия
- 1.1.1. Информация: основные определения и понятия
- Тема 1.2. Определение и классификация технических средств информатизации (тси)
- Тема 1.3. Общие сведения о представлении данных
- Тема 1.4. Представление текстовых и числовых данных
- Тема 1.5. Представление мультимедийных данных
- Введение к модулю 2
- Тема 2.1. Классификация эвм
- Тема 2.2. Общая характеристика конструкции и устройства эвм
- Тема 2.3. Характеристики эвм
- Тема 2.4. Архитектура персональных эвм
- Введение к модулю 3
- Тема 3.1. Устройство и составные элементы crt-монитора
- Тема 3.2. Типы масок в crt-мониторах
- Тема 3.3. Характеристики crt-монитора
- Тема 3.4. Активные и пассивные жидкокристаллические матрицы
- Тема 3.5. Устройство lcd-монитора с активной матрицей
- Тема 3.6. Устройство видеоадаптера
- Тема 3.7. Основные характеристики видеоадаптеров и технология sli
- Тема 3.8. Технологии создания графических эффектов
- Введение к модулю 4
- Тема 4.1. Классификация печатающих устройств и механические печатающие устройства
- Тема 4.2. Печатающие устройства с термопереносом красителя
- Тема 4.3. Современные технологии струйной печати
- Тема 4.4. Устройство печатающего узла струйного принтера
- Тема 4.5. Принцип электростатической фотографии
- Тема 4.6. Устройство лазерных и светодиодных принтеров
- Тема 4.7. Классификация копировальных аппаратов
- Тема 4.8. Устройство копировального аппарата
- Введение к модулю 5
- Тема 5.1. Классификация сканеров
- Тема 5.2. Устройство планшетного сканера
- Тема 5.3. Основные этапы работы планшетного сканера
- Тема 5.4. Характеристики сканера
- Пзс: прецизионный взгляд на мир
- 1. Темновой ток
- 2. Неоднородность чувствительности
- 3. Шумы
- Тема 5.5. Общие сведения об устройстве цифровых фотокамер
- Тема 5.6. Оптическая система цифровой фотокамеры
- Тема 5.7. Основные параметры цифровой фотокамеры
- Тема 5.8. Общие сведения о дигитайзерах и графических планшетах
- Тема 5.9. Принцип работы графического планшета и его характеристики
- Тема 5.10. Разновидности 3-х мерных дигитайзеров
- Введение к модулю 6
- Тема 6.1. Виды памяти в технических средствах информатизации
- Тема 6.2. Устройства внутренней памяти технических средств информатизации
- Тема 6.3. Устройства внешней памяти
- Тема 6.4. Общие сведения о внешних оптических носителях памяти и устройство привода для чтения носителей cd-rom
- Тема 6.5. Структура носителей cd и dvd
- Тема 6.6. Перспективные технологии внешних оптических носителей данных
- Тема 6.7. Разновидности Flash-памяти и принцип хранения данных
- Тема 6.8. Разновидности сменных карт Flash-памяти
- Тема 6.9. Накопители Flash-памяти с usb интерфейсом
- Будущее накопителей информации. Часть 1. Жесткие диски
- Тенденции развития магнитных накопителей информации
- Суперпарамагнитный предел
- Hamr и soma - технологии 2010 года
- Вместо заключения
- Будущее накопителей информации. Часть 2. Ее величество оптика
- Blue Ray vs hd-dvd
- Многослойные оптические диски
- Голографическая память
- Вместо заключения
- Введение к модулю 7
- Тема 7.1. Этапы обработки звуковых данных
- Тема 7.2. Устройство звуковой карты
- Тема 7.3. Классификация и характеристики звуковых карт
- Тема 7.4. Форматы источников видеосигналов для устройств обработки
- Тема 7.5. Карты оцифровки видео
- Тема 7.6. Методы сжатия видеоданных
- Тема 7.7. Способы монтажа видеоданных
- Типы и характеристики интерфейсов
- Архитектура системных интерфейсов
- Системные интерфейсы для пк на основе Intel-386 и Intel-486
- Интерфейс pci
- Порт agp
- Pci Express
- Интерфейсы накопителей
- Вопросы для самоконтроля
- Технология Bluetooth– как способ беспроводной передачи информации.
- О плохом. Безопасность.
- Ieee-1394 (FireWire) Введение и история создания
- Технические характеристики
- Топология
- Новые модификации ieee 1394
- Повышение эффективности
- Что дальше? 1394b
- Разъёмы
- Знакомьтесь, Bus Owner/Supervisor/Selector. Или просто boss
- Заключение
- FireWire 800 против всех: сравнение стандартов ieee-1394b, ieee-1394a, usb 2.0, ata-133 и Serial ata 150
- Струйная печать с твердыми чернилами (со сменой фаз)
- Пузырьковая струйная печать (bubble-jet)
- Пьезоэлектрическая струйная печать Физические основы пьезоэлектроники
- Технологии сканирования изображений. Классификация сканеров, основные характеристики сканеров.
- Планшетные сканеры.
- Барабанные сканеры.
- Штриховые коды. Сканеры штриховых кодов.
- Плазменные дисплеи, основные характеристики, достоинства и недостатки. Устройство и принцип работы ячейки плазменного дисплея.
- История жёстких дисков.
- Физические основы записи и чтения информации
- Схемы записи и воспроизведения
- Представление цифровой информации на внешнем носителе
- Структура накопителя на жестких магнитных дисках
- Метод записи данных на жесткий магнитный диск
- Формат записи информации на жестком магнитном диске
- Адаптер накопителей на жестких магнитных дисках
- Стандарты usb интерфейсов:
- Основные технические характеристики и преимущество интерфейса usb:
- Часть 1.
- Часть 2
- Часть 1
- Часть 2
- Часть 1
- Часть 2
- Часть 1
- Часть 2
- Клавиатуры
- Расширенные 101- клавиатуры
- 104-Клавишная Windows-клавиатура
- Портативные клавиатуры
- Индикатор Num Lock
- Устройство клавиатуры
- Конструкции клавиш
- Механические переключатели
- Замыкающие накладки
- Резиновые колпачки
- Мембранная клавиатура
- Интерфейс клавиатуры
- Автоматическое повторение
- Настройка параметров автоматического повторения в Windows
- Номера клавиш и скан-коды
- Международные раскладки клавиатуры и языки
- Разъемы для подключения клавиатуры и мыши
- Клавиатуры и мыши для порта usb
- Клавиатуры с дополнительными функциональными возможностями
- Эргономичные клавиатуры
- Беспроводные клавиатуры
- Поиск неисправностей и ремонт клавиатуры
- Как разобрать клавиатуру
- Чистка клавиатуры
- Замена клавиатуры
- Интерфейсы мыши
- Последовательная мышь
- Порт мыши на системной плате (ps/2)
- Комбинированная мышь
- Шинная мышь
- Поиск неисправностей
- Чистка мыши
- Конфликты, вызванные прерываниями
- Драйвер мыши
- Проблемы при работе с прикладными программами
- IntelliMouse фирмы Microsoft
- Устройство TrackPoint II/III
- Устройство Glidepoint/Track Pads
- Введение в порты ввода-вывода
- Последовательные порты
- Микросхема uart
- Высокоскоростные последовательные порты
- Конфигурация последовательных портов
- Тестирование последовательных портов
- Программа Microsoft Diagnostics (msd)
- Диагностика в Windows 9x
- Тестирование с замыканием петли
- Параллельные порты
- Стандарт ieee 1284
- Стандартные параллельные порты
- Двунаправленные порты (8-разрядные)
- Усовершенствованный параллельный порт (ерр)
- Порт с расширенными возможностями (еср)
- Обновление параллельного порта для работы в режимах ерр и еср
- Конфигурация параллельных портов
- Устройства, подключаемые к параллельным портам
- Преобразователи "параллельный порт-scsi"
- Тестирование параллельных портов
- Usb и 1394 (I.Link) FireWire - новые интерфейсы ввода-вывода
- Универсальная последовательная шина usb
- Usb 2.0
- Адаптеры usb
- Компьютеры типа legacy-free
- Ieee-1394 (FireWire или I.Link)
- Магнитооптическая технология
- Цены и производительность
- Сравнение магнитооптических и магнитных накопителей
- Флэш-карты
- Как работает флэш-память
- Типы устройств флэш-памяти
- CompactFlash
- SmartMedia
- Ата-совместимая pc Card (pcmcia)
- Sony MemoryStick
- Сравнение устройств флэш-памяти
- Перемещение устройств флэш-памяти из камеры в компьютер
- Устройства считывания с карт флэш-памяти
- Адаптеры типа pc Card II
- Адаптеры в виде дискеты
- Альтернативы флэш-памяти
- Хранение данных на магнитных носителях
- История развития устройств хранения данных на магнитных носителях
- Как магнитное поле используется для хранения данных
- Конструкции головок чтения/записи
- Ферритовые головки
- Тонкопленочные головки
- Головки с металлом в зазоре
- Магниторезистивные головки
- Гигантские магниторезистивные головки
- Ползунок
- Способы кодирования данных
- Частотная модуляция (fm)
- Модифицированная частотная модуляция (mfm)
- Кодирование с ограничением длины поля записи (rll)
- Сравнение способов кодирования
- Декодеры prml (Partial-Response, Maximum-Likelihood)
- Измерение емкости накопителя
- Поверхностная плотность записи
- 1 Частотная модуляция в кодировании информации для магнитных носителей
- Fm кодирование
- Mfm кодирование
- Кодирование с ограничением длины поля записи
- Rll-кодирование
- Prml-кодирование
- Головки чтения/записи
- Функционирование магнитных головок чтения/записи
- Количество головок чтения записи
- Фазовые переходы цикла Записи Данных: