Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
В Mathcad имеется ряд встроенных функций для расчетов числовых статистических характеристик рядов случайных данных:
mean(x) — выборочное среднее значение;
median (х) — выборочная медиана (median) — значение аргумента, которое делит гистограмму плотности вероятностей на две равные части;
var (х) — выборочная дисперсия (variance);
stdev(x) — среднеквадратичное (или стандартное) отклонение (standard deviation);
max(x) ,min(x) — максимальное и минимальное значения выборки;
mode(x) — наиболее часто встречающееся значение выборки;
var(х),stdev(x) — выборочная дисперсия и среднеквадратичное отклонение в другой нормировке:
х — вектор (или матрица) с выборкой случайных данных.
Пример использования первых четырех функций приведен в листинге 12.10. Листинг 12.10. Расчет числовых характеристик случайного вектора
Определение статистических характеристик случайных величин приведено в листинге 12.11 на еще одном примере обработки выборки малого объема (по пяти данным). В том же листинге иллюстрируется применение еще двух функций, которые имеют смысл дисперсии и стандартного отклонения в несколько другой нормировке. Сравнивая различные выражения, вы без труда освоите связь между встроенными функциями.
ВНИМАНИЕ! Осторожно относитесь к написанию первой литеры в этих функциях, особенно при обработке малых выборок (листинг 12.11).
Листинг 12.11. К определению статических характеристик
Иногда в статистике встречаются и иные функции, например, помимо арифметического среднего, применяются другие средние значения:
gmean(x) — геометрическое среднее выборки случайных чисел;
hmean(x) — гармоническое среднее выборки случайных чисел.
Математическое определение этих функций и пример их использования в Mathcad приведены в листинге 12.12. Листинг 12.12. Вычисление различных средних значений
-
Содержание
- Моделирование в системе MathCad типовых периодических сигналов (виртуальные генераторы);
- Правило трёх сигм – (запомните!!!)
- Вычисление спектра амплитуд и фаз периодического сигнала (ряда Фурье);
- Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);
- Функции Бесселя первого рода
- Вычисление спектра амплитуд и фаз периодических сигналов с помощью процедуры бпф;
- Вычисление спектральной плотности импульсных сигналов с помощью бпф
- Гармонический сигнал
- Виды колебаний
- Применение бпф для моделирования искажений сигналов в линейных цепях
- Применение бпф для фильтрации сигналов
- Аналогии цепей различной физической природы;
- Математические модели накопителей потенциальной и кинетической энергии;
- Кинетические механические накопители
- Колебательные (резонансные) накопители энергии
- Механические накопители с использованием сил упругости
- Пружинные механические накопители
- Тепловые накопители энергии
- Электрические накопители энергии
- Конденсаторы
- Дифференциальные уравнения простейших цепей;
- Передаточные функции простейших цепей;
- Изображение по Лапласу простейших сигналов;
- Структурные модели сложных цепей;
- Моделирование переходных процессов
- Моделирование частотных характеристик простейших цепей;
- Встроенные функции MathCad законов распределения вероятностей;
- Простейшие алгоритмы генераторов случайных чисел rnd(1);
- Источники случайных чисел
- Детерминированные гпсч
- Гпсч с источником энтропии или гсч
- Гпсч в криптографии
- Примеры криптостойких гпсч Циклическое шифрование
- Аппаратный генератор случайных чисел
- Встроенные функции MathCad для оценки числовых характеристик случайной выборки.
- Моделирование корреляционной матрицы системы случайных выборок
- Встроенные функции MathCad для построения гистограмм случайных выборок
- Имитационное моделирование разброса сопротивлений в партии резисторов;
- Моделирование игры в кости;
- Моделирование доски Гальтона;
- Моделирование броуновского движения частицы;
- Сущность явления
- Теория броуновского движения Построение классической теории
- Экспериментальное подтверждение
- Броуновское движение как немарковский случайный процесс
- Многомерный винеровский процесс
- Корреляционная функция и ее свойства;
- Спектральная плотность мощности и ее свойства;
- Формальное определение
- Связь корреляционной функции и спектральной плотности мощности;
- Корреляционная функция белого шума на выходе фильтра низких частот;
- Корреляционная функция узкополосного сигнала (белого шума на выходе полосового фильтра второго порядка);