logo search
ИС_і технол_управл_Лаб

3.3.1 "Наивные" модели прогнозирования

При создании "наивных" моделей предполагается, что некоторый последний период прогнозируемого временного ряда лучше всего описывает будущее этого прогнозируемого ряда, поэтому в этих моделях прогноз, как правило, является очень простой функцией от значений прогнозируемой переменной в недалеком прошлом.

Самой простой моделью является

Y(t+1)=Y(t),

что соответствует предположению, что "завтра будет как сегодня".

Вне всякого сомнения, от такой примитивной модели не стоит ждать большой точности. Она не только не учитывает механизмы, определяющие прогнозируемые данные (этот серьезный недостаток вообще свойственен многим статистическим методам прогнозирования), но и не защищена от случайных флуктуаций, она не учитывает сезонные колебания и тренды. Впрочем, можно строить "наивные" модели несколько по-другому

Y(t+1)=Y(t)+[Y(t)-Y(t-1)],

Y(t+1)=Y(t)*[Y(t)/Y(t-1)],

такими способами мы пытаемся приспособить модель к возможным трендам.

Y(t+1)=Y(t-s), это попытка учесть сезонные колебания