3.3.2 Средние и скользящие средние
Самой простой моделью, основанной на простом усреднении, является
Y(t+1)=(1/(t))*[Y(t)+Y(t-1)+...+Y(1)],
и в отличие от самой простой "наивной" модели, которой соответствовал принцип "завтра будет как сегодня", этой модели соответствует принцип "завтра будет, как было в среднем за последнее время". Такая модель, конечно более устойчива к флуктуациям, поскольку в ней сглаживаются случайные выбросы относительно среднего. Несмотря на это, этот метод идеологически настолько же примитивен, как и "наивные" модели и ему свойственны почти те же самые недостатки.
В приведенной выше формуле предполагалось, что ряд усредняется по достаточно длительному интервалу времени. Однако, как правило, значения временного ряда из недалекого прошлого лучше описывают прогноз, чем более старые значения этого же ряда. Тогда можно использовать для прогнозирования скользящее среднее
Y(t+1)=(1/(T+1))*[Y(t)+Y(t-1)+...+Y(t-T)],
Смысл его заключается в том, что модель видит только ближайшее прошлое (на T отсчетов по времени в глубину) и, основываясь только на этих данных, строит прогноз.
- Інформаційні системи та технології в управлінні методичні вказівки
- 1 Введення до систем підтримки прийняття рішень 4
- 2 Бізнес - прогнозування 25
- 3 Кластерний аналіз в бізнес-аналітиці 43
- 4 Вирішення задач класифікації
- 5 Література 120
- 1 Введение в Системы Поддержки Принятия Решений (сппр)
- 1.1 Определение сппр
- 1.2 Классификация сппр
- 1.3 Архитектура сппр
- 1.4 Анализ данных – основные принципы
- 1.5 Базовые методы анализа
- 1) Online Analytical Processing
- 2) Knowledge Discovery in Databases
- 3) Data Mining
- 1.6 Примеры задач, где применяются методы Data Mining
- 1.7 Программа Deductor – платформа для создания сппр
- 1.8 Контрольные вопросы
- 2 Корреляционный анализ
- 2.1 Теоретические сведения
- 2.3 Задание для самостоятельной работы
- 2.4. Контрольные вопросы
- 3 Бизнес - Прогнозирование
- 3.1 Теоретические сведения
- 3.2 Компьютерные пакеты для решения задач прогнозирования
- 3.3 Временные ряды
- 3.3.1 "Наивные" модели прогнозирования
- 3.3.2 Средние и скользящие средние
- 3.3.3 Моделирование временного ряда
- Ar(p) -авторегрессионая модель порядка p. Модель имеет вид:
- 3.3.4 Нейросетевые модели прогнозирования
- 3.3.6 Предобработка данных
- 3.4 Пример прогнозирования с помощью линейной регрессии
- 3.4.1 Импорт данных из файла
- 3.4.2 Настройка параметров столбцов
- 3.4.3 Расчет автокорреляции столбцов
- 3.4.4 Удаление аномалий
- 3.4.5 Сглаживание данных – удаление шумов
- 3.4.6 Преобразование данных к скользящему окну
- 3.4.7 Прогнозирование с помощью линейной регрессии
- 3.5 Прогнозирование с помощью нейронных сетей
- 3.5.1 Исходные данные
- 3.5.2 Удаление аномалий и сглаживание
- 3.5.3 Обучение нейросети (прогноз на 1 месяц вперед)
- 3.5.4 Построение прогноза
- 3.5.5 Результат
- 3.5.6 Выводы
- 3.6 Задание к лабораторной работе
- 3.7 Контрольные вопросы
- 4 Кластерный анализ в бизнес-аналитике
- 4.1. Теоретические основы
- 4.2 Меры близости в алгоритмах кластеризации
- 4.3 Алгоритмы кластеризации
- 4.4 Решение типовой задачи кластеризации в Deductor
- 4.4.1 Кластеризация
- 4.4.2 Выводы
- 4.6 Задания для самостоятельной работы
- 4.7 Контрольные вопросы
- 5 Методы решения задач классификации
- 5.1 Опис процесу класифікації
- 5.2 Оцінка якості моделі класифікації
- 5.3 Скоринговые модели для оценки кредитоспособности заемщиков – пример задачи классификации на основе логистической регрессии
- 5.3.1 Постановка задачи
- 5.3.2 Скоринговая карта на основе логистической регрессии
- 5.3.3 Построение модели в системе Deductor.
- 5.4 Классификация на основе дерева решений
- 5.4.1 Процесс конструирования дерева решений
- 5.4.2 Скоринговая модель на основе дерева решений
- 5.3.4 Интерактивное дерево решений
- 5. Задания к лабораторной работе
- 5.5 Контрольные вопросы
- 5 Литература