Разрешение коллизий с помощью цепочек
Технология сцепления элементов (chaining) состоит в том, что элемент множества, которым соответствует одно и то же хеш-значение, связывают в цепочку-список. В позиции номер j хранится указатель на голову списка тех элементов, у которых хеш-значение ключа равно j если таких элементов в множестве нет, в позиции j записан NIL. Операции добавления, поиска и удаления реализуются легко:
Рисунок 4.4 – Использование цепочек для разрешения коллизий
Листинг 4.2 – Словарные операции при хешировании с цепочками
Рассмотрим алгоритмы основных операций с хеш-таблицей, при открытом хешировании. В этих алгоритмах будем использовать структуры данных и операции с линейными однонаправленными списками. Поле Data в элементах списка будет здесь исполнять роль ключа, а роль указателя на список ptrHead будет играть элемент хеш-таблицы.
const
В = {подходящая константа};
type
ChainedHashTable = array[0..B-1] of PElement;
Кроме того, здесь используется предопределенная функция h(x), которая и является собственно реализацией хеш-функции.
procedure Clear_ChainedHashTable (var A: ChainedHashTable);
{Процедура очистки хеш-таблицы}
var
IndexSeg: integer;
begin
for IndexSeg:=0 to B-1 do
while A[IndexSeg] <> nil do
Del_LineSingleList(A[IndexSeg], A[IndexSeg]);
end;
function Find_ChainedHashTable(x: TypeData;
var A: ChainedHashTable;
var current: PElement): boolean;
{функция поиска элемента x в хеш-таблице. Принимает значение true, если найден и возвращает указатель, который устанавливается на найденный элемент, или принимает значение false и возвращает nil}
var
IndexSeg: integer; {номер сегмента}
begin
IndexSeg := h(x);
{начало списка, в котором надо искать, это A[IndexSeg]}
if Find_LineSingleList(x, A[IndexSeg], current) then
Find_ChainedHashTable := true
else
Find_ChainedHashTable := false;
end;
procedure Add_ChainedHashTable(x: TypeData; var A: ChainedHashTable);
{Процедура добавления элемента x в хеш-таблицу}
var
IndexSeg: integer; {номер сегмента}
current: PElement;
begin
if not Find_ChainedHashTable(x, A, current) then begin
{Если в таблице элемент уже есть, то добавлять не надо}
IndexSeg := h(x);
{Добавляем всегда в начало списка}
InsFirst_LineSingleList(x, A[IndexSeg]);
end
end;
procedure Del_ChainedHashTable(x: TypeData; var A: ChainedHashTable);
{Процедура удаления элемента x из хеш-таблицы}
var
IndexSeg: integer; {номер сегмента}
current: PElement;
begin
if Find_ChainedHashTable(x, A, current) then begin
{Если в таблице элемент еще есть, то удаляем}
IndexSeg := h(x);
Del_LineSingleList(A[IndexSeg], current);
end
end;
Листинг 4.3 – Словарные операции при хешировании с цепочками
Операция добавления работает в худшем случае за время О(1). Максимальное время работы операции поиска пропорционально длине списка (ниже мы рассмотрим этот вопрос подробнее). Наконец, удаление элемента можно провести за время О(1) – при условии, что списки двусторонне связаны (если списки связаны односторонне, то для удаления элемента х надо предварительно найти его предшественника, для чего необходим поиск по списку; в таком случае стоимость удаления и поиска примерно одинаковы).
- Министерство образования Российской Федерации
- Содержание
- 1.2 Скорость роста функций
- 1.3 Анализ алгоритмов; время работы в лучшем, худшем случаях и в среднем
- 1.4 Типы данных, структуры данных и абстрактные типы данных
- 1.5 Динамические множества
- 2 Алгоритмы сортировок
- 2.1 Понятие внутренней и внешней сортировки
- 2.2 Сортировка вставками
- 2.3 Сортировка слиянием
- 2.3.1 Описание алгоритма
- 2.3.2 Анализ времени работы алгоритмов «разделяй и властвуй»
- 2.3.2 Анализ времени работы сортировки слиянием через рекуррентное соотношение
- 2.3.3 Анализ времени работы сортировки слиянием через геометрическую интерпретацию
- 2.4 Пирамидальная сортировка
- 2.4.1 Введение в алгоритм
- 2.4.2 Сохранение основного свойства кучи
- 2.4.3 Построение кучи
- 2.5 Быстрая сортировка
- 2.5.1 Введение в алгоритм
- 2.5.2 Описание
- 2.5.3 Разбиение массива
- 2.5.4 Особенности работы быстрой сортировки
- 2.6 Особенности реализации алгоритмов сортировки; сортировка за линейное время
- 2.6.1 Введение
- 2.6.2 Разрешающее дерево сортировки сравнениями
- 2.7 Цифровая сортировка
- 2.8 Сортировка вычерпыванием
- 2.8.1 Описание алгоритма
- 2.8.2 Вероятностный анализ времени работы сортировки вычерпыванием
- 2.8.3 Анализ времени работы сортировки вычерпыванием через геометрическую интерпретацию
- 2.9 Сортировка подсчетом
- 2.9.1 Описание алгоритма
- 2.9.2 Анализ времени работы
- 3 Элементарные и нелинейные структуры данных
- 3.1 Элементарные структуры: список, стек, очередь, дек
- 3.1.1 Список Линейный однонаправленный список
- Линейный двунаправленный список
- Двунаправленный список с фиктивными элементами
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- 3.1.2 Стек
- 3.1.3 Очередь
- 3.1.3 Дек
- 3.2 Нелинейные структуры данных
- 3.2.1 Представление корневых деревьев в эвм
- Обходы деревьев
- 3.2.2 Двоичные деревья Спецификация двоичных деревьев
- Реализация
- Обходы двоичных деревьев
- 3.2.3 Двоичные деревья поиска Основные операции
- Минимум и максимум
- Следующий и предыдущий элементы
- Добавление и удаление
- Случайные деревья поиска
- Оптимальные деревья поиска
- 4 Хеширование
- 4.1 Введение
- 4.2 Прямая адресация; таблицы с прямой адресацией
- 4.3 Хеш – таблицы; возникновение коллизий и их разрешение
- Разрешение коллизий с помощью цепочек
- Анализ хеширования с цепочками
- 4.4 Способы построения хеш – функций Выбор хорошей хеш-функции
- Ключи как натуральные числа
- Деление с остатком
- Умножение
- Универсальное хеширование
- 4.5 Открытая адресация; способы вычисления последовательности испробованных мест: линейная последовательность проб, квадратичная последовательность проб, двойное хеширование
- Линейная последовательность проб
- 1 / (1 – )
- 5 Основные принципы разработки алгоритмов
- 5.1 Введение в теорию графов
- 5.1.1 Графы
- 5.1.2 Представление графов
- 5.2 Алгоритмы на графах: поиск в ширину, поиск в глубину
- 5.2.1 Поиск в ширину (волновой алгоритм)
- 5.2.2 Анализ поиска в ширину
- 5.2.3 Деревья поиска в ширину
- 5.2.4 Поиск в глубину
- 5.2.5 Анализ поиска в глубину
- 5.2.6 Свойства поиска в глубину
- 5.2.7 Классификация рёбер
- 5.3 Топологическая сортировка, задача о разбиении графа на сильно связанные компоненты
- 5.3.1 Топологическая сортировка
- 5.3.2 Сильно связные компоненты
- 5.4 Алгоритм построения минимального остовного дерева
- 5.4.1 Остовные деревья минимальной стоимости
- 5.4.2 Построение минимального покрывающего дерева
- 5.4.3 Алгоритмы Крускала и Пpимa
- 5.4.4 Алгоритм Крускала
- 5.4.5 Алгоритм Прима
- 5.5 Задача нахождения кратчайших путей на графах; алгоритм Флойда; алгоритм Дейкстры
- 5.5.1 Нахождение кратчайшего пути
- 5.5.2 Алгоритм Дейкстры
- 5.5.3 Алгоритм Флойда
- 5.6 Поиск с возвратом
- 5.6.1 Введение
- 5.6.2 Переборные алгоритмы
- 5.6.3 Метод ветвей и границ
- 5.6.4 Метод альфа-бета отсечения
- 5.6.5 Локальные и глобальные оптимальные решения
- 5.7 Метод декомпозиции ( «Разделяй и властвуй»)
- 5.7.1 «Ханойские башни»
- 5.8 Жадные алгоритмы и динамическое программирование
- 5.8.1 Задача о выборе заявок
- 5.8.2 Дискретная задача о рюкзаке
- 5.8.3 Непрерывная задача о рюкзаке
- 5.8.4 Числа Фибоначчи
- 5.8.5 Задача триангуляции многоугольника
- 5.8.6 Дп, жадный алгоритм или что-то другое?