logo search
ответы1

Приближенное вычисление спектра амплитуд периодического сигнала (формулы Бесселя);

Спектр сигнала — в радиотехнике это результат разложения сигнала на более простые

В качестве разложения обычно используются преобразование Фурье

 функции , являются простыми и определены при всех значениях t, являются ортогональными и составляют полный набор при кратном уменьшении периода;

 гармоническое колебание является единственной функцией времени, сохраняющей свою форму при прохождении колебания через линейную систему с постоянными параметрами, могут только изменяться амплитуда и фаза;

Разложение сигнала в спектр применяется в анализе прохождения сигналов через электрические цепи (спектральный метод). Спектр периодического сигнала является дискретным и представляет набор гармонических колебаний, в сумме составляющий исходный сигнал. Одним из преимуществ разложения сигнала в спектр является следующее: сигнал, проходя по цепи, претерпевает изменения (усиление, задержка, модулирование, детектирование, изменение фазы, ограничение и т. д.). Токи и напряжения в цепи под действием сигнала описываются дифференциальными уравнениями, соответствующими элементам цепи и способу их соединения. Линейные цепи описываются линейными дифференциальными уравнениями, причём для линейных цепей верен принцип суперпозиции: действие на систему сложного сигнала, который состоит из суммы простых сигналов, равно сумме действий от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на какой-либо простой сигнал, например, на синусоидальное колебание с определённой частотой, определить реакцию системы на любой сложный сигнал, разложив его в ряд по синусоидальным колебаниям.

На практике спектр измеряют при помощи специальных приборов: анализаторов спектра.

Амплитуда — модуль максимального отклонения тела от положения равновесия.

Амплиту́да — максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Неотрицательная скалярная величина, размерность которой совпадает с размерностью определяемой физической величины.

Спектр – это набор синусоидальных волн, которые, будучи надлежащим образом скомбинированы, дают изучаемый нами сигнал во временной области.

Теория Фурье1 гласит, что любое электрическое явление во временной области состоит из одной или нескольких синусоидальных волн с соответствующими частотами, амплитудами и фазами. То есть можно преобразовать сигнал во временной области в его эквивалент в частотной области. Измерения в частотной области способны показать, сколько энергии имеется на каждой конкретной частоте. При надлежащей фильтрации такой сигнал, как на Рис. 1-1, может быть разложен на отдельные синусоидальные волны, или спектральные составляющие, которые затем можно оценить независимо друг от друга. Каждая такая волна описывается амплитудой и фазой. Если сигнал, который мы хотим исследовать, - периодический (как в нашем случае), то по теории Фурье составляющие его синусоидальные волны будут разнесены в частотной области на 1/Т, где Т – это период сигнала

Теоретически, чтобы осуществить преобразование из временной области в частотную область, сигнал должен быть оценен на всем промежутке времени, то есть до ± бесконечности. Однако, на практике мы всегда ограничиваемся каким-то конечным периодом, когда проводим измерение. Преобразование Фурье также может быть осуществлено и из частотной области во временную. В этом случае, опять же, теоретически нам надо знать все спектральные составляющие в диапазоне частот до ± бесконечности. На самом же деле, производя измерения только в той области частот, в которой содержится наибольшая часть энергии сигнала, можно получить вполне приемлемые результаты. При преобразовании Фурье из частотной области очень важно знать фазу индивидуальных составляющих. Например, прямоугольный периодический сигнал, переведенный в частотную область и обратно, может превратиться в пилообразный, если не были зафиксированы фазы.

Функции Бесселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:

где  — произвольное вещественное число, называемое порядком.

Наиболее часто используемые функции Бесселя — функции целых порядков.

Хотя и порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по ).

В двумерном пространстве уравнение Лапласа записывается: