logo
ISE

12 Информационная технология экспертных систем

классификация информационных интеллектуальных систем по решению трудноформализуемых задач.

Информационные интеллектуальные системы По решению трудноформализуемых задач

- Экспертные системы (ЭС)

Классифицирующие ЭС

Доопределяющие ЭС

Трансформирующие ЭС

Мультиагентные ЭС

По способности к самообучению

- Самообучающиеся системы

Индуктивные системы

Нейронные сети

Системы, базирующиеся

на прецедентах_

Информационные хранилища

Экспертные системы (ЭС) возникли как теоретический и практический результат в применении и развитии методов искусственного интллекта с использованием ЭВМ.

ЭС - это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.

Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время.

В любой момент времени в системе существуют три типа знаний:

- Структурированные знания - статистические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.

- Структурированные динамические знания - изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.

- рабочие знания - знания, применяемые для решения конкретной задачи или проведения консультации.

Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.

Системы, основанные на знаниях, строятся по модульному принципу, что позволяет постепенно наращивать их базы знаний.

Существует ряд прикладных задач, которые решаются с помощью систем, основанных на знаниях, более успешно, чем любыми другими средствами. При определении целесообразности применения таких систем нужно руководствоваться следующими критериями.

1. Данные и знания надежны и не меняются со временем.

2. Пространство возможных решений относительно невелико.

3. В процессе решения задачи должны использоваться формальные рассуждения.

4. Должен быть по крайней мере один эксперт, который способен явно сформулировать свои знания и объяснить методы применения этих знаний для решения задач.

В целом ЭС не рекомендуется применять для решения следующих типов задач:

- математических, решаемых обычным путем формальных преобразований и процедурного анализа;

- задач распознавания, поскольку в общем случае они решаются численными методами;

- задач, знания о методах решения которых отсутствуют (невозможно построить базу знаний).

Системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом.

1. У них нет предубеждений.

2. Они не делают поспешных выводов.

3. Эти системы работают систематизированно, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.

4. База знаний может быть очень и очень большой. Будучи введены в машину один раз, знания сохраняются навсегда. Человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются.

Экспертная система состоит из базы знаний (части системы, в которой содержатся факты), подсистемы вывода (множества правил, по которым осуществляется решение задачи), подсистемы объяснения, подсистемы приобретения знаний и диалогового процессора.

База знаний - это совокупность моделей, правил и факторов, данных, порождающих анализ и выводы для нахождения решений сложных задач в некоторой предметной области.