1.3.1 Микроинженерия макроизменений: электроника и информация
Хотя научные и индустриальные предшественницы информационных технологий, основанных на электронике, могут быть найдены за десятилетия до 1940-х годов42 (не последними из них было изобретение телефона Беллом в 1876 г.; радио, изобретенное Маркони в 1898 г.; электронная лампа, созданная Де Форестом в 1906 г.), именно в период второй мировой войны и после нее были сделаны главные технологические прорывы в электронике: первый программируемый компьютер и транзистор - основа микроэлектроники, истинное ядро информационно-технологической революции в XX в.43. Однако я утверждаю, что только в 1970-х годах новые информационные технологии распространились широко, ускоряя свое синергетическое развитие и сближаясь в рамках новой парадигмы. Проследим стадии инновации в трех главных технологических областях, которые, будучи тесно взаимосвязанными, составляют историю технологий, основанных на электронике: микроэлектронике, компьютерной технике и телекоммуникациях.
Транзистор, изобретенный в 1947 г. физиками - Бардином, Браттеном и Шокли из Bell Laboratories в Муррей Хилл, Нью-Джерси (они получили Нобелевскую премию за свое открытие), сделал возможным обработку электрических импульсов с большой скоростью в двоичном переключательном режиме, позволяя, таким образом, кодировать логику и устанавливать коммуникацию с машинами и между машинами. Современные обрабатывающие устройства - полупроводниковые интегральные микросхемы, часто называемые просто чипами, состоят из миллионов транзисторов. Первый шаг в распространении транзисторов был сделан с изобретением Шокли плоскостного транзистора (Junction transistor) в 1951 г. Однако его изготовление и широкое использование потребовало новых производственных технологий и использования соответствующих материалов. Переход на кремний представлял собой революцию, буквально сделанную на песке. Он был предложен Texas Instruments в Далласе в 1954 г. (шаг, которому способствовало приглашение в 1953 г. Гордона Тила, одного из ведущих ученых из Bell Laboratories). Изобретение планарного процесса в Fairchild Semiconductors в 1959 г. (в Силиконовой долине) открыло возможность интеграции миниатюризованных компонентов с прецизионным производством.
Однако решающий шаг в микроэлектронике был сделан в 1957 г.: Джек Килби, инженер Texas Instruments (позднее получивший патент), и Боб Нойс, один из основателей Fairchild, одновременно изобрели интегральную схему. Но именно Нойс первым изготовил интегральные схемы, используя планарный процесс. Это вызвало технологический взрыв: всего за три года цены на полупроводники упали на 85 %, а в следующие десять лет производство выросло в 20 раз, причем половина выпуска шла на военные нужды44. Историческое сравнение: в Британии в период индустриальной революции потребовалось 70 лет (1780-1850), чтобы цены на хлопчатобумажные ткани упали на 85%45. Затем в течение 1960-х годов движение еще более ускорилось: по мере того как совершенствовалась технология производства и конструкция чипов улучшалась с помощью компьютеров, исполь" зующих более быстрые и более мощные микроэлектронные устройства, средняя цена интегральной схемы упала с 50 долл. в 1962 г. до 1 долл. в 1971 г.
Гигантский скачок вперед в распространении микроэлектроники во всех машинах произошел в 1971 г., когда Тед Хофф, инженер Intel (также в Силиконовой долине), изобрел микропроцессор, т. е. компьютер на чипе. Таким образом, новые возможности обработки информации получили повсеместное применение. Шла постоянная погоня за увеличением интегральной мощности схем на одном чипе, технология проектирования и производства постоянно превышала пределы интеграции, которые считались физически невозможными на базе кремниевых материалов. В середине 1990-х годов технические оценки еще давали лет 10-20 хорошей жизни кремниевым схемам, несмотря на то, что ускорились исследования альтернативных материалов. Хотя для технических деталей в этой книге нет места, аналитически важно указать скорость и степень технологических изменений.
Как известно, мощность чипов можно оценить комбинацией трех характеристик: интеграционной способностью, указанной наименьшей шириной линии на чипе, измеряемой в микронах (1 микрон = 0,000001 м); объемом памяти, измеряемым в битах (в килобитах и мегабитах); и скоростью микропроцессора, измеряемой в мегагерцах. Так, первый процессор 1971 г. содержал линии в 6,5 микрона, в 1980 г. ширина достигла 4 микрон, в 1987 г. -1 микрона, в 1995 г. чип Intel's Pentium имел ширину линии в 0,35 микрона, а во время написания этой книги прогнозировалось достижение 0,25 микрона к 1999 г. Таким образом, там, где в 1971 г. на чипе размером с чертежную кнопку умещалось 2300 транзисторов, в 1993 г. их было 35 миллионов. Объем памяти по показателю DRAM (динамическая память с произвольным доступом) составлял в 1971 г. 1024 байта; в 1980 г. - 64 000, в 1987 г. -1024 000, в 1993 г. - 16 384 000, в 1999 г. - 256 000 000 байтов. Что касается скорости, то нынешние 64-битные микропроцессоры в 550 раз быстрее, чем первый чип Intel 1972 г., a MPU (мощность микропроцессоров) удваивается каждые 18 месяцев. Прогнозы на 2002 г. предсказывают ускоренное совершенствование микроэлектронной технологии по всем трем характеристикам: в интеграции (чипы с 0,18 микрона), в объеме памяти (1024 мегабайта) и в скорости процессора (500+ мегагерц по сравнению со 150 в 1993 г.). Если учесть при этом кардинальные сдвиги в параллельной обработке информации на основе использования множественных микропроцессоров (включая в будущем объединение множественных микропроцессоров на одном чипе), то окажется, что мощь микроэлектроники еще не высвобождена до конца, вычислительная способность непрерывно увеличивается. Кроме того, развитие миниатюризации, рост специализации и падение цены на все более мощные чипы позволяет помещать их в любую машину, применяемую в повседневной жизни, - от стиральных машин и микроволновых печей до автомобилей, электронная начинка которых в стандартных моделях 1990-х годов более ценна, чем сталь.
Компьютеры также были зачаты матерью всех технологий - второй мировой войной, но родились они только в 1946 г. в Филадельфии, если не принимать во внимание такие военные разработки, как британский Colossus, построенный в 1943 г. для расшифровки вражеских кодов, и германский "Z-3", построенный, по сообщениям, в 1941 г. для авиационных вычислений46. Однако в области электроники основные усилия союзников были сосредоточены на исследовательских программах Массачусетсского технологического института (МГГ), а важнейшие эксперименты по наращиванию вычислительной мощности проводились при спонсорской поддержке военного ведомства США в университете Пенсильвании, где Маучли и Эккерт создали в 1946 г. первый общецелевой компьютер ENIAC (Electronic Numerical Integrator and Calculator). Историки могут припомнить, что первый электронный компьютер весил 30 тонн, был построен из металлических модулей в 9 футов высотой, имел 70 000 резисторов и 18 000 электронных ламп, занимая площадь размером с гимнастический зал. Потребление электричества было так велико, что, когда машину включали, в Филадельфии начинал мигать свет47.
Однако первый коммерческий вариант этой примитивной машины, UNIVAC-1, изготовленный в 1951 г. той же командой, тогда еще под маркой Remington Rand, чрезвычайно успешно обработал данные переписи населения США 1950 г. IBM также с помощью военных контрактов, частично опираясь на исследования MIT, преодолела свою прежнюю сдержанность по поводу наступления компьютерного века и в 1953 г. вступила в гонку, создав машину, содержащую 701 электронную лампу. В 1958 г., когда Sperry Rand представила "большую машину" (мейнфрейм) второго поколения, IBM немедленно выступила с моделью 7090. И только в 1964 г. IBM со своим мейнфреймом 360/370 начала доминировать в компьютерной промышленности, населенной новыми (Control Data, Digital) и старыми (Sperry, Honeywell, Burroughs, NCR) производителями машин для бизнеса. Большинство этих фирм ослабли или исчезли к 1990-м годам - так быстро происходило в электронной промышленности "созидательное разрушение" Шумпетера. В те давние времена, т. е. за 30 лет до написания этой книги, отрасль организовалась в четкую иерархию продуктов, представленную большими стационарными машинами, мини-компьютерами (на самом деле - довольно объемистыми машинами) и терминалами, плюс некоторые специальные области информатики, оставленные эзотерическому миру суперкомпьютеров (продукт скрещивания прогнозов погоды и военных игр), в которых некоторое время, несмотря на нехватку технологического воображения, царила невероятная изобретательность Сеймура Крея.
Микроэлектроника все это изменила, вызвав "революцию в революции". Появление в 1971 г. микропроцессора, способного поместить компьютер на чип, перевернуло мир электроники, да, в сущности, и весь мир. В 1975 г. Эд Роберте, инженер, создавший маленькую фирму калькуляторов MITS в Альбукерке (Нью-Мексико), построил вычислительный ящик с экстравагантным названием "Альтаир" в честь персонажа телевизионного сериала Star Trek - предмета восхищения маленькой дочери изобретателя. Машина была примитивной, но построена как маленький компьютер вокруг микропроцессора. Она стала основой для проектирования Apple I, а затем и Apple II, ставшего первым коммерчески успешным микрокомпьютером, построенным в гараже родительского дома двумя юношами, бросившими школу в Менло-Парк (Силиконовая долина). Их звали Стив Возняк и Стив Джобс, а их поистине фантастическая история к настоящему времени стала легендой о начале информационной эпохи. Apple Computers, основанная в 1976 г. тремя партнерами с капиталом в 91 тыс. долл., достигла в 1982 г. объема продаж в 583 млн. долл., возвестив миру о начале эры распространения компьютера. IBM отреагировала быстро: в 1981 г. она представила свою собственную версию микрокомпьютера, получившего блестящее название "персональный компьютер" (PC), которое стало родовым именем всех микрокомпьютеров. Но поскольку он был основан не на собственной технологии IBM, а на технологии, разработанной для IBM в других местах, он стал уязвим для кло-нирования, которое скоро начало практиковаться в массовом масштабе, особенно в Азии. Однако, хотя этот факт со временем подорвал господство ШМ в мире персональных компьютеров, пользование клонами IBM PC распространилось по всему миру, установив, несмотря на превосходство машин Apple, общий стандарт. Macintosh, запущенный в производство в 1984 г., был первым шагом к созданию "дружественного интерфейса" за счет введения графического интерфейса для пользователей, первоначально разработанного в Palo Alto Research Center компании Xerox.
Разработка программного обеспечения, приспособленного к операциям, выполняемым с помощью микрокомпьютеров, явилась важнейшим условием их повсеместного распространения48. Программное обеспечение для PC также появилось благодаря энтузиазму, вызванному "Альтаиром": Билл Гейтс и Пол Аллен (двое молодых людей, бросивших Гарвард) в 1976 г. адаптировали BASIC для операций на машине "Альтаир". Осознав его потенциал, они основали (вначале в Альбукерке, а два года спустя перебрались в Сиэтл, где жили родители Билла Гейтса) фирму Microsoft, которая сегодня является гигантом программного обеспечения, сумевшим преобразовать господство в программном обеспечении операционных систем в господство в программном обеспечении для экспоненциально растущего рынка микрокомпьютеров в целом.
В последние 15 лет растущая мощность чипов привела к драматическому расширению мощности микрокомпьютеров, сократив функции больших компьютеров. В начале 1990-х годов однопроцессорные микрокомпьютеры имели мощность обработки информации, равную мощности компьютера IBM, выпущенного всего пятью годами раньше. Сетевые системы, основанные на микропроцессорах и состоящие из небольших настольных машин (клиентов), обслуживаемых более мощными и более специализированными машинами (серверами), могут со временем заменить специализированные компьютеры по обработке информации, такие, как мейнфреймы и суперкомпьютеры. В самом деле, к успехам в микроэлектронике и программном обеспечении мы должны добавить крупные прорывы в области развития сетевых мощностей. С середины 1980-х годов микрокомпьютеры уже нельзя воспринимать как изолированные машины: использование портативных компьютеров обеспечивает все большую мобильность их работы в сетях. Эта экстраординарная гибкость и способность увеличивать память и мощность обработки, совместно используя возможности компьютера в электронной сети, в 1990-х годах решительно переориентировала компьютерную эпоху: от централизованного хранения и обработки данных она перешла к сетевому, интерактивному совместному использованию возможностей компьютеров. Изменилась не только вся технологическая система, но и ее социальные и организационные взаимодействия. Так, средняя стоимость обработки информации упала приблизительно с 75 долл. на 1 млн. операций в 1960 г. до менее 0,01 цента в 1990 г.
Разумеется, эта сетевая способность стала возможной только благодаря крупным разработкам 1970-х годов в области телекоммуникации и компьютерных сетевых технологий. Но в то же время такие изменения стали возможными благодаря новым микроэлектронным устройствам и растущей вычислительной способности компьютеров - яркая иллюстрация синергетаческих отношений в информационно-технологической революции.
Телекоммуникации были революционизированы также путем сочетания "узловых" технологий (электронные коммутаторы и маршрутизаторы) с новыми технологиями связи (технологиями передач информации). Первый промышленный электронный коммутатор ESS-1 был введен Bell Labs в 1969 г. В середине 1970-х прогресс в технологии интегральных схем сделал возможным создание цифрового коммутатора, что позволило превзойти по скорости, мощности и гибкости аналоговые устройства, экономя одновременно пространство, энергозатраты и труд. АТТ, материнская компания Bell, вначале неохотно пошла на его введение из-за необходимости амортизировать капиталы, уже вложенные в аналоговое оборудование, но после в 1977 г., когда Canada Northern Telecom благодаря своему лидерству в цифровых коммутаторах захватила долю на рынке США, компании Bell вступили в гонку и положили начало подобному движению во всем мире.
Крупные успехи в развитии оптико-электронных технологий (волоконная оптика и лазерные передачи) и цифровой пакетной технологии передач радикально расширили пропускную способность линий передач. Inegrated Broadband Networks (IBN), появление которой предсказывали в 1990-х годах, могла бы существенно превзойти революционные планы 1970-х годов о создании Integrated Services Digital Networks (ISDN): если пропускная способность ISDN на медной проволоке оценивалась в 144 000 битов в секунду, то IBN, работающая на оптических волокнах, если она будет создана, сможет передавать 1 квадриллион битов в секунду, пусть даже цена за передачу единицы информации окажется выше. Чтобы измерить темп изменений, напомним, что в 1956 г. первый трансатлантический телефонный кабель передавал 50 сжатых речевых сигналов; в 1995 г. волоконный кабель мог передавать 85 000 таких сигналов. Оптико-электронные технологии передачи данных во взаимодействии с передовыми архитектурами коммутирования и маршрутизации, такими, как Asynchronous Transmission Mode (ATM) и Transmission Control Protocol/Interconnection Protocol (ТСРЛР), являются базой "информационного суперхайвея", характеристики которого будут рассмотрены в главе 5.
Различные формы использования спектра радиоволн (традиционное вещание, прямое спутниковое вещание, микроволны, цифровая сотовая телефонная связь) так же, как коаксиальные кабели и волоконная оптика, предлагают разнообразие и гибкость технологий передачи, приспособлены к обширному диапазону использований и делают возможной повсеместную связь между мобильными пользователями. Так, сотовая телефонная связь в 1990-х годах ворвалась в мир, буквально усеяв Азию нехитрыми пейджерами, а Латинскую Америку - престижными сотовыми телефонами. Этот скачок опирался на обещания (например, от Motorola) выпустить всеохватное, персональное коммуникационное устройство до 2000 г. Каждый рывок в специфической технологической сфере усиливает эффект связанных с ней информационных технологий. Так, мобильная телефонная связь, опираясь на способность компьютеров направлять сообщения, обеспечивает в то же время основу для вездесущих вычислительных операций и неограниченной интерактивной электронной коммуникации в реальном времени.
42 См. Hall and Preston (1988); Mazlish (1993).
43 Я думаю, что, как и в случае индустриальных революций, будет несколько информационно-технологических революций, из которых та, которая выявилась в 1970-х годах, есть только первая. Вторая, которая, вероятно, произойдет в начале XXI в., отведет более важную роль биологической революции в тесном взаимодействии с новыми компьютерными технологиями.
44 Braun and Macdonald (1982).
45 Mokyr (1990 :111).
46 Hall and Preston (1988).
47 См. описание в Forester (1987).
48 Egan (1995)
- 1. Информационно-технологическая революция
- 1.1 Какая революция?
- 1.2 Уроки индустриальной революции
- 1.3 Историческая последовательность информационно-технологической революции
- 1.3.1 Микроинженерия макроизменений: электроника и информация
- 1.3.2 Технологический водораздел 1970-х годов
- 1.3.3 Технологии жизни
- 1.3.4 Социальный контекст и динамика технологических изменений
- 1.4 Модели, акторы и арены информационно-технологической революции
- 1.5 Информационно-технологическая парадигма
- 2. Информациональная экономика и процесс глобализации
- 2.1 Введение
- 2.2.2 Является ли производительность, основанная на знании, особенностью информациональной экономики?
- 2.2.4 Реполитизация информационального капитализма
- 2.2.5 Историческая специфичность информационализма
- 2.3 Глобальная экономика: происхождение, структура и динамика
- 2.4 Новейшее международное разделение труда
- 2.5 Архитектура и геометрия информациональной/глобальной экономики
- 2.6 Приложение
- 3. Сетевое предприятие: культура, институты и организации информациональной экономики
- 3.1 Введение
- 3.2 Организационные траектории в период реструктуризации капитализма и перехода от индустриализма к информационализму
- 3.2.1 От массового производства к гибкому производству
- 3.2.2 Малый бизнес и кризис крупной корпорации: миф и реальность
- 3.2.5 Корпоративные стратегические альянсы
- 3.2.7 Кризис модели вертикальной корпорации и возникновение деловых сетей
- 3.3 Информационная технология и сетевое предприятие
- 3.4 Культура, институты и экономическая организация: деловые сети Восточной Азии
- 3.4.2 Культура, организации и институты: азиатские деловые сети и государство развития
- 3.5 Мультинациональные предприятия, транснациональные корпорации и международные сети
- 3.6 Дух информационализма
- 4.1 Историческая эволюция структуры занятости и профессиональной структуры в развитых капиталистических странах: "большая семерка", 1920-2005 гг.
- 4.1.1 Постиндустриализм, экономика услуг и информациональное общество
- 4.2 Существует ли глобальная рабочая сила?
- 4.3 Трудовой процесс в информациональной парадигме
- 4.4 Влияние информационной технологии на занятость: к "безработному обществу"?
- 4.5 Работа и информациональный водораздел: работники с гибким рабочим временем
- 4.6 Информационная технология и реструктуризация отношений между трудом и капиталом: социальный дуализм или фрагментированные общества?
- 5. Культура реальной виртуальности: интеграция электронных средств коммуникации, конец массовой аудитории и возникновение интерактивных сетей
- 5.1 Введение
- 5.2 От "галактики Гутенберга" к "галактике Маклюэна": возникновение культуры средств массовой информации
- 5.3 Новые средства массовой информации и диверсификация массовой аудитории
- 5.4 Коммуникация через компьютеры, институциональный контроль, социальные сети и виртуальные сообщества
- 5.5 Великое слияние: мультимедиа как символическая среда
- 5.6 Культура реальной виртуальности
- 6. Пространство потоков
- 6.1 Введение
- 6.2 Развитые услуги, информационные потоки и глобальный город
- 6.3 Новое индустриальное пространство
- 6.4 Повседневная жизнь в электронном коттедже: конец городов?
- 6.5 Трансформация городской формы: информациональный город
- 6.5.1 Последний фронтир Америки: пригороды
- 6.5.2 Увядающий шарм европейских городов
- 6.6 Социальная теория пространства и теория пространства потоков
- 6.7 Архитектура конца истории
- 6.8 Пространство потоков и пространство мест
- 7. Край вечности: вневременное время
- 7.1 Введение
- 7.2 Время, история и общество
- 7.3 Время как источник стоимости: глобальное казино
- 7.4 Гибкое время и сетевое предприятие
- 7.5 Сжатие и искривление рабочего времени жизни
- 7.6 Размывание жизненного цикла: на пути к социальной аритмии?
- 7.7 Отрицание смерти
- 7.8 Мгновенные войны
- 7.9 Виртуальное время
- 7.10 Время, пространство и общество: край вечности
- 8.1 Экстенсивная модель экономического роста и пределы гипериндустриализма
- 8.2 Технологический вопрос
- 8.3 Похищение идентичности и кризис советского федерализма
- 8.4 Последняя перестройка110
- 8.5 Национализм, демократия и распад Советского государства
- 9.1 Генезис нового мира1
- 9.2 Новое общество
- 9.3 Новые пути социальных изменений
- 9.4 По ту сторону нашего тысячелетия
- 9.5 Что делать?
- 9.6 Финал