Видеоконтроллеры
Видеоконтроллеры (видеоадаптеры) являются внутрисистемными устройствами, преобразующими данные в сигнал, отображаемый монитором, и непосредственно управляющими мониторами и выводом информации на их экран. Видеоконтроллер содержит: графический контроллер, растровую оперативную память (видеопамять, хранящую воспроизводимую на экране информацию), микросхемы ПЗУ, цифро-аналоговый преобразователь (ЦАП).
Графический процессор GPU (Graphics Processing Unit) формирует управляющие сигналы для монитора и управляет выводом закодированного изображения из видеопамяти, регенерацией ее содержимого, взаимодействием с центральным процессором. Контроллер с аппаратной поддержкой некоторых функций, позволяющей освободить центральный процессор от выполнения части типовых операций, называется акселератором (ускорителем). Акселераторы эффективны при работе со сложной графикой: многооконным интерфейсом, трехмерной (3D) графикой и т. п. Основными компонентами специализированного процессора являются: SVGA-ядро, ядро 2D-ускорителя, ядро 3D-ускорителя, видеоядро, контроллер памяти, интерфейс системной шины, интерфейс внешнего порта ввода-вывода. Аппаратно большая часть этих компонентов реализуется на одном кристалле видеочипсета .
Поясним некоторые компоненты.
2D-ускоритель — устройство, осуществляющее обработку графики в двух координатах на одной плоскости;
3D-ускоритель — устройство, осуществляющее формирование и обработку трехмерных (3D) изображений. В процессе формирования 3D-изображения аппаратный 3D-ускоритель взаимодействует со специализированным программным обеспечением. Таким программным обеспечением, существенно облегчающим работу 3D-ускорителя, являются интерфейсы API: Direct X, Open GL, Open ML. Эти интерфейсы поддерживаются большинством современных видеочипсетов.
В чипсете GeForce3 впервые стали использоваться небольшие программки —шейдеры (конвейеры), посылаемые прикладными программами на видеоконтроллер. Если последний распознает их, то обеспечивается возможность обрабатывать трехмерные изображения с гораздо большей скоростью и точностью.
Процесс 3D обработки состоит из несколько этапов:
определение состояния объектов и соответствующих текущему состоянию геометрических трехмерных моделей;
разбиение этих моделей на простые элементы — графические многоугольные примитивы, в качестве которых чаще используют треугольники (именно на этом этапе подключается аппаратный 3D-ускоритель);
преобразование параметров примитивов в целочисленные значения, с которыми работают аппаратные компоненты;
закраска примитивов (формирование текстур) и финальная обработка.
Текстура это поверхность среза трехмерного объекта, фрагмент изображения, заносимый в примитив или на весь графический слой. Текстуры хранятся в буфере видеопамяти и путем прямой адресации могут оперативно выводиться на отображение в мониторе.
Конвейеры бывают вершинные и пиксельные.(в современных моделях видеочипсетов, поддерживающих API DirectX 10 используются унифицированные шейдеры, выполняющие и вершинные и пиксельные программы). Вершинные конвейеры выполняют расчет каркаса слоя — расчет координат вершин многоугольника, отображающего плоскость, на которую заносится текстура слоя трехмерного объекта. Пиксельные конвейеры формируют текстуру слоя на этой плоскости. У видеокарт бывает до 24 пиксельных конвейеров. Все пиксельные конвейеры работают параллельно, поэтому от их количества непосредственно зависит производительность карты. Основные аппаратные элементы 3D-ускорителя: геометрический процессор, механизм установки и механизм закраски примитивов. Характеристиками ускорителей являются максимальная пропускная способность (треугольников в секунду), максимальная производительность закраски (точек в секунду), скорость (кадров в секунду).
Важная характеристика — емкость видеопамяти, она определяет количество хранимых в памяти пикселов и их атрибутов. Видеоконтроллер должен обеспечить естественное качественное изображение на экране монитора, что возможно при большом числе воспроизводимых цветовых оттенков, высокой разрешающей способности и высокой скорости вывода изображения на экран. Под разрешающей способностью здесь (так же как и для мониторов) понимается то количество выводимых на экран монитора пикселов, которое может обеспечить видеоконтроллер. При разрешении 1024 ´ 768 на экран должно выводиться 786 432 пиксела, а при разрешении 2048 ´ 1536 — 3 145 728 пикселов. Для каждого пиксела должна храниться и его характеристика — атрибут.
Количество воспроизводимых цветовых оттенков (глубина цвета) зависит от числа двоичных разрядов, используемых для представления атрибута каждого пиксела. Выделение 4 битов информации на пиксел (контроллеры CGA) позволяло отображать 24 = 16 цветов, 8 битов (контроллеры EGA и VGA) — 28 = 256 цветов, 16 битов (стандарт HighColor), 24 и 25 битов (стандарт TrueColor в контроллерах SVGA), соответственно, 216 = 65 536, 224 = 16 777 216 и 225 = 33 554 432 цветов. В стандарте TrueColor в отображении каждого пиксела обычно участвуют 32 бита, из них 24 или 25 нужны для характеристики цветового оттенка, а остальные для служебной информации.
Необходимую емкость видеопамяти для работы с двумерной графикой можно приблизительно рассчитать, умножив количество байтов атрибута на количество пикселов, выводимых на экран. Например, в стандарте TrueColor при разрешающей способности монитора 1024 ´ 768 пикселов емкость видеопамяти должна быть не менее 2,5 Мбайт, а при разрешении 2048 ´ 1536 — не менее 9,5 Мбайт. При работе со сложными графическими программами, такими например, как Photoshop, AutoCad, ImageReadSy, 3D Max и другими, ввиду необходимости отображения стереоструктур, их слоев и формирующих их примитивов, необходимая емкость видеопамяти может достигать 128 Мбайт и более (в атрибут каждого пиксела включается кроме его координат X и Y на плоскости значение его третьей координаты Z — глубины). В сложных графических системах требуется большая разрядность Z-буфера (до 32 бит): иначе бывает трудно различить близко расположенные по глубине точки изображения. Кроме того, для ускорения последовательной выборки текстур из памяти иногда создаются два буфера. Пока на экран выводится содержимое из одного буфера, ведется расчет размещения текстур для другого буфера. Затем буферы меняются местами. Это позволяет придать движению изображения на экране большую плавность, но требует двукратного увеличения объема видеопамяти. Поэтому для 3D-графики иногда необходима видеопамять 256 Мбайт и более. Правда существует возможность размещать текстуры в оперативной памяти ЭВМ, но это дополнительно существенно загружает центральный процессор, и даже при использовании современных скоростных интерфейсов (PCI Express 16x, например) замедляет работу видеосистемы и ухудшает качество изображения.
В текстовых режимах работы требуется существенно меньший объем видеопамяти. Скорость вывода изображения на экран зависит от скорости обмена данными видеопамяти со специализированным процессором, цифро-аналоговым преобразователем и с центральным процессором. Для увеличения скорости обмена данными используются:
увеличение разрядности и тактовой частоты внутренней шины видеоконтроллера (вплоть до 256 разрядов и 800 МГц);
новейшие быстродействующие типы оперативной памяти. В качестве видеопамяти в контроллерах могут применяться различные типы памяти DRAM, как универсальные: SDRAM, DRDRAM, DDRSDRAM, так и особо быстрые специализированные: GDDR3, GDDR4 SGRAM - синхронные графические , имеющие пропускную способность более 40 Гбайт/с; VRAM (Video RAM) и WRAM (Windows RAM) - двухпортовые типы видеопамяти — в памяти , в которых для ввода и вывода информации используются разнотипные порты.
Скорость обмена данными с центральным процессором определяется пропускной способностью шины, через которую осуществляется обмен. В современных компьютерах используются высокоскоростные интерфейсные шины AGP и PCI Express. Поскольку на вход аналоговых мониторов необходимо подавать аналоговый видеосигнал, для преобразования цифровых данных, хранимых в видеопамяти, в аналоговую форму в видеоконтроллере предусмотрен цифро-аналоговый преобразователь RAMDAC (Digital Analog Converter for RAM). Он отвечает за формирование окончательного изображения на мониторе. RAMDAC преобразует результирующий цифровой поток данных, поступающих от видеопамяти, в уровни интенсивности, подаваемые на соответствующие электронные пушки трубки монитора — красную, зеленую и синюю. Помимо цифро-аналоговых преобразователей для каждого цветового канала (красного, зеленого, синего) RAMDAC имеет встроенную память для хранения данных о цветовой палитре и т. д. Такие характеристики RAMDAC, как его частота и разрядность, непосредственно также определяют качество изображения.
От частоты ЦАП зависит, какое максимальное разрешение и при какой частоте кадровой развертки монитора сможет поддерживать видеоконтроллер. Разрядность определяет, сколько цветов может поддерживать видеоконтроллер. Наиболее распространено 8-битовое представление характеристики пиксела на каждый цветовой канал монитора (суммарная разрядность 24).
В видеоконтроллере имеются микросхемы ПЗУ двух типов:
содержащие видеоBIOS — базовую систему ввода-вывода, используемую центральным процессором для первоначального запуска видеоконтроллера;
содержащие сменные матрицы знаков, выводимых на экран монитора.
Многие видеокарты имеют электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись информации пользователем под управлением специального драйвера, часто поставляемого вместе с видеоадаптером. Таким образом можно обновлять и видео-BIOS, и экранные шрифты.
Основные характеристики видеоконтроллера:
режимы работы (текстовый и графический);
воспроизведение цветов (монохромный и цветной);
число цветов или число полутонов (в монохромном);
количество вершинных и пиксельных конвейеров;
разрешающая способность (число адресуемых на экране монитора пикселов по горизонтали и вертикали);
емкость и число страниц в буферной памяти (число страниц — это число запоминаемых текстовых экранов, любой из которых путем прямой адресации может быть выведен на отображение в мониторе);
размер матрицы символа (количество пикселов в строке и столбце матрицы, формирующей символ на экране монитора);
разрядность шины данных, определяющая скорость обмена данными с системной шиной, и т. д.
Общепринятый стандарт формируют следующие видеоконтроллеры:
Hercules — монохромный графический адаптер;
MDA — монохромный дисплейный адаптер (Monochrome Display Adapter);
MGA — монохромный графический адаптер (Monochrome Graphics Adapter);
CGA — цветной графический адаптер (Color Graphics Adapter);
EGA — улучшенный графический адаптер (Enhanced Graphics Adapter);
VGA — видеографический адаптер (Video Graphics Adapter), часто его называют видеографической матрицей (Video Graphics Array);
SVGA — улучшенный видеографический адаптер (Super VGA);
PGA — профессиональный графический адаптер (Professional GA).
Минимально допустимые характеристики основных стандартов видеоконтроллеров приведены в табл. 13.7.
Таблица 13.7. Стандарты видеоконтроллеров
Параметр | Тип видеоконтроллера | ||||
MGA | CGA | EGA | VGA | SVGA | |
Разрешающая способность, пикселы | 720 ´ 350 | 640 ´ 200 | 720 ´ 350 | 720 ´ 350 | 1024 ´ 768 |
Максимальное число цветовых оттенков |
| 16
| 256
| 256
| 256 |
Число строк и столбцов (в текстовом режиме) | 80 ´ 25 | 80 ´ 25 | 80 ´ 25 | 80 ´ 25 (80 ´ 50) | 80 ´ 25 (80 ´ 50) |
Минимальная емкость видеобуфера (Кбайт) | 64 | 128 | 512 | 512 | 1024 |
Число страниц в буфере (в текстовом режиме) | 1 | 4 | 4–8 | 8 | 8 |
Размер матрицы символа (пикселов по горизонтали и по вертикали) | 14 ´ 9 | 8 ´ 8 | 8 ´ 8 14 ´ 8 | 8 ´ 8 14 ´ 8 | 8 ´ 8 14 ´ 8 |
Частота кадров не меньше (Гц) | 50 | 60 | 60 | 60 | 70 |
В настоящее время выпускаются и практически используются только видеоконтроллеры типа SVGA и существенно реже — PGA.
Для плоскопанельных мониторов используются контроллеры типа SXGA (цифровая модификация SVGA), а также WSXGA (1680 x 1050) и WUXGA (1920 x 1200). SVGA- и SXGA-видеоконтроллеры поддерживают разрешение до 2048 ´ 1536, число цветовых оттенков более 16,7 млн (наиболее «продвинутые» 32-разрядные — более 33 млн.), имеют объем видеопамяти до 512 Мбайт.
Производители эффективных видеоконтроллеров в своих картах используют в основном видеочипсеты компаний nVidia (карты GeForce) и ATI (карты Radeon). Значительно меньшее распространение получили чипсеты компаний Intel, Matrox, SIS и другие.
Видеоконтроллер устанавливается на материнской плате как видеокарта в свободный разъем AGP или PCI Express. Некоторые видеокарты имеют вход для подключения телевизионной антенны (TV in) и тюнер, то есть позволяют через ПК просматривать телепередачи, видеофильмы с видеомагнитофона и видеокамеры; ряд видеокарт имеют разъем для подключения телевизора (TV out). В таблице 13.8 показаны основные характеристики некоторых видеоконтроллеров.
Таблица 13.8. Основные характеристики некоторых видеоконтроллеров
Модель | Чип Сет, технология | Частота ядра чипcета, Мгц | Количество транзисторов, млн | Емкость памяти, Мбайт | Тип памяти | Частота памяти, МГц | Ширина шины, бит | Пропускная Способность, Гбайт/с | Число конвейеров, вершинные/пиксельные | |
ATI Radeon T2-128 | FGL 9600 | 400 | 75 | 128 | DDR | 300 | 128 | 10,2 | 2/4 | |
ATI Radeon V3200 | FGL 9600 | 500 | 110 | 128 | DDR | 350 | 128 | 12,8 | 2/4 | |
ATI Radeon V7100 | FGL 9800 XT | 500 | 160 | 256 | GDDR3 | 500 | 256 | 28,8 | 6/16 | |
ATI Radeon X2-256 | FGL 9800 | 380 | 110 | 256 | DDR2 | 350 | 256 | 22,4 | 4/8 | |
ATI Radeon X3-256 | FGL 9800Pro | 500 | 160 | 256 | GDDR3 | 500 | 256 | 28,8 | 6/12 | |
ATI Radeon EAX 1800XT TOP | X1800 XT | 700 |
| 512 | GDDR3 | 800 | 256 | 46 |
| |
nVidia GeForce Quadro FX1000 | NV30GL | 300 | 125 | 128 | DDR2 | 300 | 128 | 10,4 | 3/8 | |
nVidia GeForce Quadro FX1100 | NV36GL | 425 | 82 | 128 | DDR2 | 300 | 128 | 17,6 | 3/4 | |
nVidia GeForce Quadro FX1300 | NV38GL | 350 | 135 | 128 | DDR | 225 | 256 | 14,4 | 3/16 | |
nVidia GeForce Quadro FX3000 | NV35GL | 400 | 130 | 256 | DDR | 425 | 256 | 27,2 | 3/16 | |
nVidia GeForce Quadro FX3400 | NV45GL | 350 | 222 | 256 | GDDR 3 | 450 | 256 | 28,8 | 6/16 | |
nVidia XFX GeForce 8800GT | G92 , 0,065 мкм | 670 | 210 | 512 | GDDR3 | 1950 | 256 | 35 | Ун.32 | |
Gigabit GV GeForce 8800 Ultra | G80, 0,09 мкм | 612 | 289 | 512 | GDDR3 | 2100 | 256 | 32 | Ун.32 | |
AMD Radeon HD3850 | RV670, 0,055 мкм | 670 |
| 256 | GDDR3 | 1700 | 256 | 20 | Ун. 32 | |
Gigabit GV Radeon HD3870 | RV670, 0,055 мкм | 775 |
| 512 | GDDR4 | 2250 | 256 | 35 | Ун. 32 | |
AMD Radeon Mobiliti 9800 | M18, 0,10 мкм | 350 | 160 | 256 | DDR3 | 600 | 256 | 10 | Пикс. 8, Ун. 6 |
Для графического процессора разработаны эффективные технологии:
nVidia SLI, разделяющая одно ядро GPU на два виртуальных, каждое из которых отвечает за свою половину экрана;
ATI CrossFire, объединяющая для совместной работы две видеокарты, а также двухпроцессорные видеокарты Gigabyte GV-3D1, содержащие два процессора GeForce 6600GT.
В видеоконтроллерах для плоскопанельных мониторов вместо аналоговых интерфейсов SVGA используются специальные скоростные цифровые интерфейсы. Хронологически первый интерфейс P&D (Plug and Display) был достаточно дорогим, и сейчас в цифровых видеокартах чаще всего используется его упрощенный вариант — интерфейс DFP (Digital Flat Panel). Он обеспечивает пиковую скорость передачи около 2 Гбит/с и поддерживает разрешение мониторов до 1280 ´ 1024 пиксела при частоте кадровой развертки 60 гц.
В 2002 году разработан новый интерфейс DVI (Digital Visual Interface). Его начальная версия поддерживает разрешение 1920 ´ 1080 пикселов, но интенсивно ведется его доработка, поскольку уже появились плоскопанельные мониторы с более высоким разрешением (например, мониторы фирмы NEC с разрешением 2048 ´ 1546). Интерфейс DVI весьма перспективен, поскольку он:
обеспечивает надежную передачу данных, в связи с этим возможно существенное увеличение длины соединительных кабелей без потери качества изображения;
может работать как с цифровыми дисплеями, так и с аналоговыми;
поддерживает спецификацию Plug and Play;
упрощает архитектуру видеоконтроллера: позволяя уже сейчас для аналоговых мониторов перенести RAMAC в сам монитор, а в перспективе позволит удалить из видеоконтроллера всю его аналоговую часть.
Широкое распространение получает и новый интерфейс - High Definition Multimedia Interface (HDMI). Этот интерфейс обеспечивает одновременную передачу видео и аудио- информации по одному кабелю. Он эффективен для передачи мультимедийной информации. Первая версия HDMD поддерживала скорость передачи 5 Гбайт/с, а HDMD1.3 имеет пропускную способность уже 10,2, что позволяет подключать дисплеи высокого разрешения, поддерживающие большое количество цветовых оттенков.
- Введение
- Раздел «Создание и эволюция эвм» Глава 1. Научные предпосылки создания эвм
- Управление и информация
- Информация и ее свойства
- Экономическая информация
- Три формы адекватности информации
- Меры информации
- Синтаксические меры информации
- Семантическая мера информации
- Прагматическая мера информации
- Показатели качества информации
- Репрезентативность
- Содержательность
- Достаточность
- Доступность
- Актуальность
- Своевременность
- Точность
- Достоверность
- Устойчивость
- Защищенность
- Полезность
- Информатика
- Наука информатика
- Информационные технологии
- Индустрия информатики
- Вопросы для самопроверки
- Глава 2. История создания вычислительной техники
- Механические счетные машины
- Электромеханические счетные машины
- Электронные вычислительные машины
- Вопросы для самопроверки
- Глава 3. Эволюция эвм
- Вопросы для самопроверки
- Глава 4. Основные классы вычислительных машин
- Большие компьютеры
- Серверы и рабочие станции
- Рабочие станции
- Серверы
- Малые компьютеры
- Микрокомпьютеры
- Персональные компьютеры
- Наколенные компьютеры
- Компьютеры-блокноты (ноутбуки)
- Нетбуки
- Планшетные компьютеры
- Райтеры
- Электронные книги Ридеры
- Карманные компьютеры
- Периферийные устройства кпк
- Коммуникаторы (смартфоны)
- Электронные секретари
- Электронные записные книжки
- Вычислительные системы
- Многомашинные и многопроцессорные вс
- Высокопараллельные многопроцессорные вычислительные системы
- Ассоциативные и потоковые вс
- Ассоциативные вычислительные системы
- Потоковые вычислительные системы
- Суперкомпьютеры
- Кластерные суперкомпьютеры
- Вопросы для самопроверки
- Раздел 2. «Информационно-логические основы построения эвм» Глава 5. Представление информации в эвм
- Представление чисел с фиксированной и плавающей запятой
- Алгебраическое представление двоичных чисел
- Прочие системы счисления
- Двоично-десятичная система счисления
- Шестнадцатеричная система счисления
- Выполнение арифметических операций в компьютере
- Особенности выполнения операций над числами с плавающей запятой
- Выполнение арифметических операций над числами, представленными в дополнительных кодах
- Особенности выполнения операций в обратных кодах
- Выполнение арифметических операций в шестнадцатеричной системе счисления
- Особенности представления информации в пк
- Вопросы для самопроверки
- Глава 6. Логические основы построения эвм
- Основы алгебры логики
- Логический синтез вычислительных схем
- Электронные технологии и элементы
- Полевые транзисторы
- Планарные микросхемы
- Электронные и логические схемы
- Триггер
- Регистр
- Дешифратор
- Логические операции, выполняемые в компьютере
- Or (или) — логическое сложение
- Xor (исключающее или)
- Not (не) — операция отрицания
- Вопросы для самопроверки
- Раздел 3 Архитектура персонального компьютера Глава 7. Основные блоки эвм и их назначение
- Структурная схема эвм
- Микропроцессор
- Системная шина
- Основная память
- Внешняя память
- Источник питания
- Внешние устройства
- Дополнительные интегральные микросхемы
- Элементы конструкции пк
- Функциональные характеристики эвм
- Производительность, быстродействие, тактовая частота
- Разрядность микропроцессора и кодовых шин интерфейса
- Типы системного и локальных и внешних интерфейсов
- Емкость оперативной памяти
- Виды накопителей на жестких магнитных дисках
- Тип и емкость накопителей на гибких магнитных дисках
- Наличие, виды и емкость кэш-памяти
- Аппаратная и программная совместимость с другими типами компьютеров
- Возможность работы в многозадачном режиме
- Надежность
- Глава 8. Микропроцессоры
- Микропроцессоры типа cisc
- Микропроцессоры Over Drive
- Микропроцессоры Pentium
- Микропроцессоры Pentium Pro
- Микропроцессоры Pentium mmx и Pentium II
- Микропроцессоры Pentium III
- Микропроцессоры Pentium 4
- Эффективные технологии в мп Intel
- Архитектура Intel Net Burst
- Многоядерные микропроцессоры
- Микропроцессоры линейки core
- Процессоры Core Penryn
- Микропроцессоры типа risc
- Микропроцессоры типа vliw
- Физическая и функциональная структура микропроцессора
- Устройство управления
- Арифметико-логическое устройство
- Микропроцессорная память
- Универсальные регистры
- Сегментные регистры
- Регистры смещений
- Регистр флагов
- Статусные флаги
- Управляющие флаги
- Интерфейсная часть мп
- Вопросы для самопроверки
- Глава 9. Системные платы и чипсеты
- Разновидности системных плат
- Чипсеты системных плат
- Чипсет i965 (Broadwater)
- Глава 10. Интерфейсная система пк
- Шины расширений
- Локальные шины
- Интерфейсы pci
- Интерфейс agp
- Периферийные шины
- Интерфейсы ide/ata
- Интерфейс scsi
- Интерфейс rs 232
- Интерфейс ieee 1284
- Универсальные последовательные интерфейсы
- Последовательная шина usb
- Стандарт ieee 1394
- Последовательный интерфейс sata
- Последовательный интерфейс sas
- Семейство последовательных интерфейсов pci Express
- Прикладные программные интерфейсы
- Беспроводные интерфейсы
- Интерфейсы IrDa
- Интерфейс Bluetooth
- Интерфейс wusb
- Семейство интерфейсов WiFi
- Семейство интерфейсов WiMax
- Интерфейс WiBro
- Прочие интерфейсы
- Вопросы для самопроверки
- Глава 11. Основная память пк
- Статическая и динамическая оперативная память
- Основная память
- Физическая структура основной памяти
- Оперативные запоминающие устройства
- Виды модулей оперативной памяти
- Типы оперативной памяти
- Постоянные запоминающие устройства
- Логическая структура основной памяти
- Вопросы для самопроверки
- Глава12. Внешние запоминающие устройства
- Размещение информации на дисках
- Адресация информации на диске
- Накопители на жестких магнитных дисках
- 0,85" Винчестеры Toshiba
- Дисковые массивы raid
- Накопители на гибких магнитных дисках
- Накопители на оптических дисках
- Неперезаписываемые оптические диски cd-rom
- Оптические диски с однократной записью
- Оптические диски с многократной записью
- Оптические универсальные диски dvd
- Маркировка скоростных характеристик cd и dvd
- Эффективные технологии хранения информации на cd и dvd
- Многослойный cd
- Millipede-диск
- Флуоресцентные оптические диски
- Особенности организации флуоресцентных дисков
- Прочие технологии
- Накопители на магнитооптических дисках
- Накопители на магнитной ленте
- Устройства флэш-памяти
- Твердотельные накопители на базе флэш-памяти
- Вопросы для самопроверки
- Глава 13. Видеотерминальные устройства
- Видеомониторы на элт
- Монохромные мониторы
- Цветные мониторы
- Виды развертки изображения на мониторе
- Цифровые и аналоговые мониторы
- Размер экрана монитора
- Вертикальная (кадровая) развертка
- Строчная развертка
- Разрешающая способность мониторов
- Частотная полоса пропускания
- Эргономичность электронно-лучевых мониторов
- Видеомониторы на плоских панелях
- Мониторы на жидкокристаллических индикаторах
- Tmos – мониторы
- Плазменные мониторы
- Электролюминесцентные мониторы
- Светоизлучающие мониторы
- Мониторы на основе «электронной бумаги»
- Стереомониторы
- Видеоконтроллеры
- Вопросы для самопроверки
- Глава 14. Внешние устройства пк
- Клавиатура
- Графический манипулятор мышь
- Принтеры
- Матричные принтеры
- Струйные принтеры
- Лазерные принтеры
- Термопринтеры
- Твердочернильные принтеры
- Сервисные устройства
- Сетевые принтеры
- С канеры
- Типы сканеров
- Форматы представления графической информации в пк
- Форматы растровой графики
- Д игитайзеры
- Основные характеристики дигитайзеров
- Плоттеры
- Типы плоттеров
- Вопросы для самопроверки
- Глава 15. Средства мультимедиа
- Системы речевого ввода и вывода информации
- Системы распознавания речи
- Системы, ориентированные на распознавание отдельных слов, команд и вопросов
- Системы распознавания предложений и связной речи
- Системы идентификации по образцу речи
- Механизм распознавания речи
- Системы синтеза речи
- Компьютерные средства обеспечения звуковых технологий
- Звуковые платы (карты)
- Компьютерные средства обеспечения видеотехнологий
- Вопросы для самопроверки
- Раздел 4. Компьютерные сети Глава 16. Основы построения компьютерных сетей
- Классификация и архитектура компьютерных сетей
- Виды компьютерных сетей
- Модель взаимодействия открытых систем
- Локальные вычислительные сети
- Виды локальных вычислительных сетей
- Одноранговые локальные сети
- Серверные локальные сети
- Корпоративные компьютерные сети
- Глобальная информационная сеть Интернет
- Протоколы, используемые в сети
- Программное обеспечение компьютерных сетей
- Информационное обеспечение сетей
- Вопросы для самопроверки
- Глава 17.Техническое обеспечение компьютерных сетей
- Серверы и рабочие станции
- Рабочие станции
- Серверы
- Маршрутизаторы и коммутирующие устройства
- Методы коммутации
- Коммутация сообщений
- Коммутация пакетов
- Методы маршрутизации
- Варианты адресации компьютеров в сети
- Методы маршрутизации, используемые в сетях
- Модемы и сетевые карты
- Модемы для аналоговых каналов связи
- Протоколы передачи данных
- Модемы для цифровых каналов связи
- Сетевые карты
- Линии и каналы связи
- Цифровые каналы связи
- Раздел 5. Программное управление Глава 18. Программное управление — основа автоматизации вычислительного процесса После изучения главы вы должны знать:
- Алгоритмы и языки программирования
- Состав машинных команд
- Пример программы на яск
- Программное обеспечение компьютера
- Системное программное обеспечение
- Операционные системы компьютеров
- Прикладное программное обеспечение
- Прикладные программы для офиса
- Корпоративные прикладные программы
- Режимы работы компьютеров
- Однопрограммный режим
- Многопрограммный режим
- Система прерываний программ в пк
- Адресация регистров и ячеек памяти в пк
- Относительная адресация
- Стековая адресация
- Вопросы для самопроверки
- Глава 19.Элементы программирования на языке Ассемблер
- Основные компоненты языка ассемблер Алфавит языка
- Константы (числа и строки) Только целые числа
- Строки (литералы)
- Команды (операторы)
- Директивы (псевдооператоры)
- Модификаторы
- Адресация регистров и ячеек памяти в Ассемблере
- Непосредственная адресация
- Прямая адресация регистров мпп
- Адресация ячеек оп
- Основные команды языка ассемблер
- Команды пересылки данных
- Арифметические команды
- Команды сложения, вычитания и сравнения
- Команды приращения
- Команды умножения
- Команды деления
- Логические команды
- Команды безусловной передачи управления
- Команды перехода к подпрограмме и выхода из подпрограммы
- Команда перехода к подпрограмме: call opr
- Команда выхода из подпрограммы
- Команды условной передачи управления
- Команды условной передачи управления для беззнаковых данных
- Команды условной передачи управления для знаковых данных
- Команды условной передачи управления для прочих проверок
- Команды управления циклами
- Команды прерывания
- Основные директивы ассемблера
- Директивы определения идентификаторов
- Директивы определения данных
- Директивы определения сегментов и процедур
- Директивы управления трансляцией
- Программирование процедур работы с устройствами ввода-вывода
- Программирование работы с дисплеем
- Видеооперации с прерыванием 21h dos
- Программирование работы с клавиатурой
- Некоторые аспекты создания исполняемых программ
- Процедуры формирования программы
- Структура программы на языке ассемблера для создания файла exe
- Программа вычисления квадратного корня
- Основные сведения о листинге программы
- Последовательность работы пк при выполнении программы
- Краткие сведения об отладчике программ debug
- Основные команды отладчика debug
- Вопросы для самопроверки
- Заключение. Перспективы развития информационных систем
- Литература