7.3.1 Основные определения
Задача условной оптимизации заключается в поиске минимального или максимального значения скалярной функции f(x)n-мерного векторного аргументах (в дальнейшем без ограничения общности будут рассматриваться задачи поиска минимального значения функции):
f(x)min (7.34)
при ограничениях:
gi(x) 0, i 1, ..., k;
hj(x) 0, j 1, .., m; (7.35)
a x b.
Здесь x, a, b— векторы-столбцы:
, , (7.36)
Оптимизируемую функцию f(x)называютцелевой функцией.Каждая точкаxвn-мерном пространстве переменныхx1, ...,х,в которой выполняются ограничения задачи, называетсядопустимой точкой задачи.Множество всех допустимых точек называетсядопустимой областью G .Будем считать, что это множество не пусто.Решением задачисчитается допустимая точках*, в которой целевая функцияf(х)достигает своего минимального значения. Векторх*называютоптимальным.Если целевая функцияf(x)и ограничения задачи представляют собой линейные функции независимых переменныхх1, ..., хn, то соответствующая задача являетсязадачей линейного программировании,в противном случае -задачей нелинейного программирования.В дальнейшем будем полагать, что функцииf(x), g(x), i 1, ..., k , hj(x), j 1, …, m, -непрерывные и дифференцируемые.
В общем случае численные методы решения задач нелинейного программирования можно разделить на прямые и непрямые. Прямые методыоперируют непосредственно с исходными задачами оптимизации и генерируют последовательности точек {x[k]}, таких, чтоf(х[k+1]) f(x[k]).В силу этого такие методы часто называютметодами спуска.Математически переход на некоторомk-м шаге(k. 0, 1, 2, ...) от точких[k] к точкеx[k+1] можно записать в следующем виде:
x[k+l] x[k] + akp[k], (7.37)
где р[k] —вектор, определяющий направление спуска;аk —длина шага вдоль данного направления. При этом в одних алгоритмах прямых методов точких[k] выбираются так, чтобы для них выполнялись все ограничения задачи, в других эти ограничения могут нарушаться на некоторых или всех итерациях. Таким образом, в прямых методах при выборе направления спуска ограничения, определяющие допустимую областьG,учитываются в явном виде.
Непрямые методысводят исходную задачу нелинейного программирования к последовательности задач безусловной оптимизации некоторых вспомогательных функций. При этих методах ограничения исходной задачи учитываются в неявном виде.
Рассмотрим некоторые алгоритмы прямых методов.
- Основы информационных технологий
- Оглавление
- Предисловие
- Современные информационные технологии
- 1.1 История, современное состояние и перспективы развития вычислительной техники
- 1.2 Элементная база, архитектура, сетевая компоновка, производительность
- 1.3 Понятие информации. Классификация и виды информационных технологий
- Основные свойства информационных технологий.
- 1 .4 Операционные системы
- 2 Основные программные средства информационных технологий
- 2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- 2.2. Графические редакторы
- 2.3. Электронные таблицы
- 2.4. Сервисные инструментальные программные средства
- 2.5. Системы математических вычислений MatLab
- 2.6 Система подготовки презентаций
- 3 Сетевые технологии и интернет
- 3.1 Классификация компьютерных сетей
- 3.2 Семиуровневая модель структуры протоколов связи
- 2.3. Взаимодействие компьютеров в сети
- 3.3 Организационная структура Internet
- 3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- 3.5 Языки разметки гипертекста html и xml
- 3.6 Скриптовые языки программирования
- 4 Системы управления базами данных
- 4.1. Классификация систем управления базами данных
- 4.2 Модели данных
- 4.3 Моделирование баз данных
- 4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- 4.5 Общая характеристика субд ms Access
- 4.6 Основные объекты ms Access
- 4.7 Основы языка sql
- Контрольные вопросы
- 5 Защита информации при использовании информационных технологий
- 5.1 Основы информационной безопасности
- 5.2. Методы и средства защиты информации
- 5.3 Защита от несанкционированного доступа к данным
- 5.4 Классы безопасности компьютерных систем
- 5.5 Основные аспекты построения системы информационной безопасности
- 6 Математическое моделирование и численные методы
- 6.1 Математические модели и численные методы решения задач в различных предметных областях
- 6.2 Численное дифференцирование и интегрирование
- 6.2.1 Особенность задачи численного дифференцирования
- 6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- 6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- 6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- 6.2.5 Постановка задачи численного интегрирования
- 6.2.6 Квадратурные формулы Ньютона-Котеса
- 6.2.7 Формула трапеций
- 6.2.8 Формула Симпсона
- 6.2.9 Оценка точности квадратурных формул
- 6.3 Методы решения обыкновенных дифференциальных уравнений
- 6.3.1 Задача Коши и краевая задача
- 6.3.1.1 Классификация уравнений
- 6.3.1.2 Задача Коши
- 6.3.2 Одношаговые методы решения задачи Коши
- 6.3.2.1 Метод Эйлера
- 6.3.2.2 Модифицированный метод Эйлера
- 6.3.2.3 Метод Рунге-Кутта четвертого порядка
- 6.3.2.4 Погрешность решения и выбор шага
- 6.3.3 Многошаговые методы решения задачи Коши
- 6.3.3.1 Многошаговые методы
- 6.3.3.2 Метод Адамса
- 6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- 6.3.3.4 Общая характеристика многошаговых методов
- 6.3.4 Краевая задача и метод стрельбы
- 6.3.4.1 Краевая задача
- 6.3.4.2 Метод стрельбы
- 6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- 6.4 Решение дифференциальных уравнений в чстных производных
- 6.4.1 Краткие теоретические сведения
- 6.4.2 Классификация уравнений по математической форме
- 6.4.3 Основы метода конечных разностей
- 6.4.3.1 Построение сетки
- 6.4.3.2 Аппроксимация уравнения эллиптического типа
- 6.4.3.3 Аппроксимация уравнения гиперболического типа
- 6.4.3.4 Аппроксимация уравнения параболического типа
- 6.4.3.5 Погрешность решения
- 6.4.4 Основы метода конечных элементов
- 6.4.4.1. Формирование сетки
- 6.4.4.2 Конечно-элементная аппроксимация
- 6.4.4.3 Построение решения
- 6.6 Элементы математической статистики
- 6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- 6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- 6.6.3 Средние величины и показатели вариации
- 6.6.4 Средняя арифметическая и ее свойства
- 6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- 6.6.6 Коэффициент вариации
- 6.6.7 Структурные средние
- 6.6.8 Законы распределения случайных величин
- 6.6.9 Статистические гипотезы
- 7 Методы оптимизации и системы поддержки принятия решений
- 7.1 Характеристика методов решения задач оптимизации
- 7.1.1 Численные методы безусловной оптимизации нулевого порядка
- 7.1.1.1 Основные определения
- 7.1.1.2 Классификация методов
- 7.1.1.3 Общая характеристика методов нулевого порядка
- 7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- 7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- 7.1.1.6 Метод вращающихся координат (метод Розенброка)
- 7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- 7.1.2 Численные методы безусловной оптимизации первого порядка
- 7.1.2.1 Минимизация функций многих переменных. Основные положения
- 7.1.2.2 Метод наискорейшего спуска
- 7.1.2.3 Метод сопряженных градиентов
- 7.1.3 Численные методы безусловной оптимизации второго порядка
- 7.1.3.1 Особенности методов второго порядка
- 7.1.3.2 Метод Ньютона
- 7.2 Линейное программирование
- 7.2.1 Транспортная задача линейного программирования
- 7.2.1.1 Постановка задачи
- 7.2.1.2 Венгерский метод
- 7.2.1.3 Метод потенциалов
- 7.3 Прямые методы условной оптимизации
- 7.3.1 Основные определения
- 7.3.2 Метод проекции градиента
- 7.3.3 Комплексный метод Бокса
- 7.4 Методы штрафных функций
- 7.4.1 Основные определения
- 7.4.2 Методы внутренних штрафных функций
- 7.4.3 Методы внешних штрафных функций
- 7.4.4 Комбинированные алгоритмы штрафных функций
- 7.5 Информационные технологии поддержки принятия решений
- 7.6 Информационные технологии экспертных систем Характеристика и назначение
- Список литературы