6.4.4.2 Конечно-элементная аппроксимация
Рассмотрим построение аппроксимации на одномерном примере. Пусть требуется найти распределение некоторой непрерывной функции u(x) вдоль стержня (см. рис. 6.9, а). На практике эта функция может описывать, например, распределение температуры или деформацию стержня.
а б
Рис. 6.9 ‑ Одномерное распределение
Выберем и пронумеруем ряд точек вдоль оси х ‑ это узловые точки (рис. 6.9, б). В нашем примере взято всего пять точек. Вообще говоря, их может быть произвольное количество, и располагаться они могут не на равном расстоянии друг от друга. Предположим, что значения в узловых точках известны. Они обозначены на рис. 6.9, б в соответствии с номерами узлов – u1 u2, u3, u4,.
Разбиение расчетной области, то есть стержня, на конечные элементы может быть проведено различными способами. Можно, например, выделить четыре элемента, включив в каждый из них по два соседних узла (рис. 6.10 а). А можно выделить в стержне всего два элемента, содержащие по три узла (рис. 6.10, б).
Рис. 6.10 ‑ Варианты разбиения стержня на элементы
При использовании четырех элементов, каждый из которых включает только два узла, аппроксимирующая функция в пределах элемента будет линейна по х, так как две точки однозначно определяют прямую линию. Общая аппроксимация зависимости и(х) по всей длине стержня будет складываться из четырех отрезков прямых (рис. 6.10, а).
Зависимость u(x) в пределах одного элемента, ограниченного двумя соседними узлами xi и Xj? (j = i + 1), можно представить линейным интерполяционным полиномом u(x) ~ ? а + ax x. Определив параметры а и ах по известным в точках xi и xj ? значениям функции ui и Uj,? запишем интерполяционный полином, то есть функцию элемента следующим образом:
(6.86)
где Ni и Nj - функции формы конечного элемента, ui и uj - значения функции u(x) в точках xi и xj, – матричная строка функций формы элемента
Следует отметить, что ряд терминов метода конечных элементов получили название из механики, где он впервые начал активно использоваться.
В случае разбиения области на два элемента (рис. 6.10, б) три узловые точки в каждом из них позволяют однозначно определить функции элементов в виде полиномов второй степени. Соответственно распределение u(х) на всей длине стержня будет аппроксимироваться кусочно-непрерывной квадратичной функцией. При этом общая аппроксимация для стержня может содержать излом из-за несовпадения углов наклона графиков полиномов (их первых производных) в третьем узле.
Для двухмерной или трехмерной задачи аппроксимация строится аналогичным образом. В зависимости от вида элементов (количества используемых в них узлов) также применяется линейная или нелинейная аппроксимация. Примеры аппроксимации двухмерной непрерывной функции u(x,y) приведены на рис. 6.11.
Рис. 6.11 ‑ Моделирование двухмерной скалярной функции с помощью линейной (а) и нелинейной (б) аппроксимации
Функция формы элемента будет представлена плоскостью, если для него взято минимальное число узлов, которое для треугольного элемента равно трем, а для четырехугольного ‑ четырем. В этом случае используют линейную аппроксимацию .
По аналогии с одномерным случаем линейный интерполяционный многочлен для простейшего треугольного элемента, включающего только три узла, записывают в виде
(6.87)
где Nt , Nj , Nk - функции формы элемента, и ,?uj , uk - значения функции в узлах, принадлежащих элементу, [N(e)] - матричная строка функций формы элемента, [u(e)] - вектор-столбец значений функции u(x,y) в его узлах. Если элемент содержит большее количество узлов, то аппроксимирующая функция элемента будет отображаться криволинейной поверхностью.
Для всей расчетной области аппроксимацией распределения u(x,y) является кусочно-линейная (или кусочно-нелинейная) поверхность, каждый из участков которой определяется на отдельном элементе с помощью значений u(x,y) в принадлежащих ему узлах.
Для построения аппроксимации так, как это было показано выше, необходимо знать распределение u(x,y) во всей расчетной области. Однако до решения задачи эта зависимость обычно как раз и не известна. Тем не менее, используя аппроксимирующие формулы (6.86) или (6.87), решение можно получить. Способы отыскания решения рассмотрены ниже.
- Основы информационных технологий
- Оглавление
- Предисловие
- Современные информационные технологии
- 1.1 История, современное состояние и перспективы развития вычислительной техники
- 1.2 Элементная база, архитектура, сетевая компоновка, производительность
- 1.3 Понятие информации. Классификация и виды информационных технологий
- Основные свойства информационных технологий.
- 1 .4 Операционные системы
- 2 Основные программные средства информационных технологий
- 2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- 2.2. Графические редакторы
- 2.3. Электронные таблицы
- 2.4. Сервисные инструментальные программные средства
- 2.5. Системы математических вычислений MatLab
- 2.6 Система подготовки презентаций
- 3 Сетевые технологии и интернет
- 3.1 Классификация компьютерных сетей
- 3.2 Семиуровневая модель структуры протоколов связи
- 2.3. Взаимодействие компьютеров в сети
- 3.3 Организационная структура Internet
- 3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- 3.5 Языки разметки гипертекста html и xml
- 3.6 Скриптовые языки программирования
- 4 Системы управления базами данных
- 4.1. Классификация систем управления базами данных
- 4.2 Модели данных
- 4.3 Моделирование баз данных
- 4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- 4.5 Общая характеристика субд ms Access
- 4.6 Основные объекты ms Access
- 4.7 Основы языка sql
- Контрольные вопросы
- 5 Защита информации при использовании информационных технологий
- 5.1 Основы информационной безопасности
- 5.2. Методы и средства защиты информации
- 5.3 Защита от несанкционированного доступа к данным
- 5.4 Классы безопасности компьютерных систем
- 5.5 Основные аспекты построения системы информационной безопасности
- 6 Математическое моделирование и численные методы
- 6.1 Математические модели и численные методы решения задач в различных предметных областях
- 6.2 Численное дифференцирование и интегрирование
- 6.2.1 Особенность задачи численного дифференцирования
- 6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- 6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- 6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- 6.2.5 Постановка задачи численного интегрирования
- 6.2.6 Квадратурные формулы Ньютона-Котеса
- 6.2.7 Формула трапеций
- 6.2.8 Формула Симпсона
- 6.2.9 Оценка точности квадратурных формул
- 6.3 Методы решения обыкновенных дифференциальных уравнений
- 6.3.1 Задача Коши и краевая задача
- 6.3.1.1 Классификация уравнений
- 6.3.1.2 Задача Коши
- 6.3.2 Одношаговые методы решения задачи Коши
- 6.3.2.1 Метод Эйлера
- 6.3.2.2 Модифицированный метод Эйлера
- 6.3.2.3 Метод Рунге-Кутта четвертого порядка
- 6.3.2.4 Погрешность решения и выбор шага
- 6.3.3 Многошаговые методы решения задачи Коши
- 6.3.3.1 Многошаговые методы
- 6.3.3.2 Метод Адамса
- 6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- 6.3.3.4 Общая характеристика многошаговых методов
- 6.3.4 Краевая задача и метод стрельбы
- 6.3.4.1 Краевая задача
- 6.3.4.2 Метод стрельбы
- 6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- 6.4 Решение дифференциальных уравнений в чстных производных
- 6.4.1 Краткие теоретические сведения
- 6.4.2 Классификация уравнений по математической форме
- 6.4.3 Основы метода конечных разностей
- 6.4.3.1 Построение сетки
- 6.4.3.2 Аппроксимация уравнения эллиптического типа
- 6.4.3.3 Аппроксимация уравнения гиперболического типа
- 6.4.3.4 Аппроксимация уравнения параболического типа
- 6.4.3.5 Погрешность решения
- 6.4.4 Основы метода конечных элементов
- 6.4.4.1. Формирование сетки
- 6.4.4.2 Конечно-элементная аппроксимация
- 6.4.4.3 Построение решения
- 6.6 Элементы математической статистики
- 6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- 6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- 6.6.3 Средние величины и показатели вариации
- 6.6.4 Средняя арифметическая и ее свойства
- 6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- 6.6.6 Коэффициент вариации
- 6.6.7 Структурные средние
- 6.6.8 Законы распределения случайных величин
- 6.6.9 Статистические гипотезы
- 7 Методы оптимизации и системы поддержки принятия решений
- 7.1 Характеристика методов решения задач оптимизации
- 7.1.1 Численные методы безусловной оптимизации нулевого порядка
- 7.1.1.1 Основные определения
- 7.1.1.2 Классификация методов
- 7.1.1.3 Общая характеристика методов нулевого порядка
- 7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- 7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- 7.1.1.6 Метод вращающихся координат (метод Розенброка)
- 7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- 7.1.2 Численные методы безусловной оптимизации первого порядка
- 7.1.2.1 Минимизация функций многих переменных. Основные положения
- 7.1.2.2 Метод наискорейшего спуска
- 7.1.2.3 Метод сопряженных градиентов
- 7.1.3 Численные методы безусловной оптимизации второго порядка
- 7.1.3.1 Особенности методов второго порядка
- 7.1.3.2 Метод Ньютона
- 7.2 Линейное программирование
- 7.2.1 Транспортная задача линейного программирования
- 7.2.1.1 Постановка задачи
- 7.2.1.2 Венгерский метод
- 7.2.1.3 Метод потенциалов
- 7.3 Прямые методы условной оптимизации
- 7.3.1 Основные определения
- 7.3.2 Метод проекции градиента
- 7.3.3 Комплексный метод Бокса
- 7.4 Методы штрафных функций
- 7.4.1 Основные определения
- 7.4.2 Методы внутренних штрафных функций
- 7.4.3 Методы внешних штрафных функций
- 7.4.4 Комбинированные алгоритмы штрафных функций
- 7.5 Информационные технологии поддержки принятия решений
- 7.6 Информационные технологии экспертных систем Характеристика и назначение
- Список литературы