Решение уравнений средствами Mathcad
Для численного поиска решений простейших уравнений вида f(x) = 0 решение в Mathcad находится с помощью функцииroot. Функция эта может использоваться в двух различных формах, при этом реализуются разные численные алгоритмы. Так, если определена только одна точка приближения к корню, поиск решений будет осуществляться так называемым методом секущих. Если же задан интервал, на котором предположительно локализовано решение, то поиск его будет осуществлен с применением метода деления пополам (метод Больцано).
root( f(х1, x2, …), х1, a, b )
Возвращает значение х1, принадлежащее отрезку [a,b], при котором выражение или функция f(х) обращается в 0. Оба аргумента этой функции должны быть скалярами. Функция возвращает скаляр.
Аргументы:
f(х1, x2, …) - функция, определенная где-либо в рабочем документе, или выражение. Выражение должно возвращать скалярные значения.
х1 - имя переменной, которая используется в выражении. Этой переменной перед использованием функции root необходимо присвоить числовое значение. Mathcad использует его как начальное приближение при поиске корня.
a, b - необязательны, если используются, то должны быть вещественными числами, причем a < b.
Если после многих итераций Mathcad не находит подходящего приближения, то появится сообщение (отсутствует сходимость).
Эта ошибка может быть вызвана следующими причинами:
Уравнение не имеет корней.
Корни уравнения расположены далеко от начального приближения.
Выражение имеет локальные max и min между начальным приближением и корнями.
Выражение имеет разрывы между начальными приближениями и корнями.
Выражение имеет комплексный корень, но начальное приближение было вещественным.
Чтобы установить причину ошибки, исследуйте график f(x). Он поможет выяснить наличие корней уравнения f(x) = 0 и, если они есть, то определить приблизительно их значения.
- Лабораторная работа №1. Аналитическое моделирование.
- I.Статичные аналитические модели оптимизации. Построение в среде ms Excel.
- Задача линейного программирования (злп).
- I этап: Анализ словесного описания задачи
- II этап: Построение математической модели
- III этап: Формирование задачи выбора наилучшей стратегии
- Решение задач линейного программирования с помощью надстройки «поиск решений» в среде excel
- Задача оптимального использования ресурсов
- Запуск «Поиска решения»
- Создание отчета по результатам поиска решения
- Индивидуальные варианты заданий.
- II. Статичные аналитические модели, описываемые уравнениями. Построение в среде MathCad.
- Решение уравнений средствами Mathcad
- Построение графиков в MathCad
- Рекомендации по использованию функции root.
- Нахождение корней полинома
- Символьное решение уравнений
- Индивидуальные варианты заданий.
- III. Динамические аналитические модели. Построение в среде MatLab.
- Решение обыкновенных дифференциальных уравнений в matlab.
- Решение систем обыкновенных дифференциальных уравнений с заданными начальными условиями.
- Решение дифференциальных уравнений второго порядка.
- Интегрирование систем линейных дифференциальных уравнений в матричном виде.
- Варианты заданий. Общие задания.
- Индивидуальные задания.
- Лабораторная работа №2. Построение аналитической модели по результатам эксперимента.
- I. Построение модели в среде Excel.
- II. Построение модели в среде Statistica. Общие сведения о программе Statistica.
- III. Построение модели в среде Origin Pro.
- Индивидуальные варианты заданий.
- Лабораторная работа №3. Модели массового обслуживания.
- I. Построение модели в среде AnyLogic.
- Пользовательский интерфейс
- Общая информация о создании моделей в Enterprise Library
- Моделирование одноканальной смо с очередью.
- Моделирование многоканальной смо с очередью.
- Сбор статистики о времени обслуживания клиента.
- Индивидуальные варианты заданий.
- Лабораторная работа №4. Моделирование интеллектуальных систем. Нейросеть обратного распространения ошибки.
- I. Обзор использования пакета Excel Neural Package.
- II. Обзор использования пакета Deductor.
- III. Обзор использования пакета statistica Neural Networks.
- Индивидуальные варианты заданий.
- Лабораторная работа №5. Моделирование интеллектуальных систем. Нейронная сеть для кластеризации.
- I. Теоретические сведения.
- II. Проектирование карты Кохонена в пакете Excel Neural Package.
- III. Проектирование карты Кохонена в пакете Deductor.
- IV. Проектирование карты Кохонена в пакете Statistica.
- Индивидуальные варианты заданий.
- Лабораторная работа №6. Моделирование интеллектуальных систем. Система нечеткого вывода.
- I. Постановка задачи.
- II. Процесс разработки системы
- Индивидуальные варианты заданий.