Символьное решение уравнений
В Mathcad можно быстро и точно найти численное значение корня с помощью функции root. Но имеются некоторые задачи, для которых возможности Mathcad позволяют находить решения в символьном (аналитическом) виде.
Решение уравнений в символьном виде позволяет найти точные или приближенные корни уравнения:
Если решаемое уравнение имеет параметр, то решение в символьном виде может выразить искомый корень непосредственно через параметр. Поэтому вместо того, чтобы решать уравнение для каждого нового значения параметра, можно просто заменять его значение в найденном символьном решении.
Если нужно найти все комплексные корни полинома со степенью меньше или равной 4, символьное решение даст их точные значения в одном векторе или в аналитическом или цифровом виде.
Команда Символьно Переменная Вычислить позволяет решить уравнение относительно некоторой переменной и выразить его корни через остальные параметры уравнения. Чтобы решить уравнение символьно необходимо:
Напечатать выражение (для ввода знака равенства используйте комбинацию клавиш [Ctrl]=).
Выделить переменную, относительно которой нужно решить уравнение, щелкнув на ней мышью.
Выбрать пункт меню Символьно Переменная Вычислить.
Нет необходимости приравнивать выражение нулю. Если Mathcad не находит знака равенства, он предполагает, что требуется приравнять выражение нулю.
Рис.1. 25. Подготовка к символьным вычислениям.
Рис.1. 26. Результат символьных вычислений.
- Лабораторная работа №1. Аналитическое моделирование.
- I.Статичные аналитические модели оптимизации. Построение в среде ms Excel.
- Задача линейного программирования (злп).
- I этап: Анализ словесного описания задачи
- II этап: Построение математической модели
- III этап: Формирование задачи выбора наилучшей стратегии
- Решение задач линейного программирования с помощью надстройки «поиск решений» в среде excel
- Задача оптимального использования ресурсов
- Запуск «Поиска решения»
- Создание отчета по результатам поиска решения
- Индивидуальные варианты заданий.
- II. Статичные аналитические модели, описываемые уравнениями. Построение в среде MathCad.
- Решение уравнений средствами Mathcad
- Построение графиков в MathCad
- Рекомендации по использованию функции root.
- Нахождение корней полинома
- Символьное решение уравнений
- Индивидуальные варианты заданий.
- III. Динамические аналитические модели. Построение в среде MatLab.
- Решение обыкновенных дифференциальных уравнений в matlab.
- Решение систем обыкновенных дифференциальных уравнений с заданными начальными условиями.
- Решение дифференциальных уравнений второго порядка.
- Интегрирование систем линейных дифференциальных уравнений в матричном виде.
- Варианты заданий. Общие задания.
- Индивидуальные задания.
- Лабораторная работа №2. Построение аналитической модели по результатам эксперимента.
- I. Построение модели в среде Excel.
- II. Построение модели в среде Statistica. Общие сведения о программе Statistica.
- III. Построение модели в среде Origin Pro.
- Индивидуальные варианты заданий.
- Лабораторная работа №3. Модели массового обслуживания.
- I. Построение модели в среде AnyLogic.
- Пользовательский интерфейс
- Общая информация о создании моделей в Enterprise Library
- Моделирование одноканальной смо с очередью.
- Моделирование многоканальной смо с очередью.
- Сбор статистики о времени обслуживания клиента.
- Индивидуальные варианты заданий.
- Лабораторная работа №4. Моделирование интеллектуальных систем. Нейросеть обратного распространения ошибки.
- I. Обзор использования пакета Excel Neural Package.
- II. Обзор использования пакета Deductor.
- III. Обзор использования пакета statistica Neural Networks.
- Индивидуальные варианты заданий.
- Лабораторная работа №5. Моделирование интеллектуальных систем. Нейронная сеть для кластеризации.
- I. Теоретические сведения.
- II. Проектирование карты Кохонена в пакете Excel Neural Package.
- III. Проектирование карты Кохонена в пакете Deductor.
- IV. Проектирование карты Кохонена в пакете Statistica.
- Индивидуальные варианты заданий.
- Лабораторная работа №6. Моделирование интеллектуальных систем. Система нечеткого вывода.
- I. Постановка задачи.
- II. Процесс разработки системы
- Индивидуальные варианты заданий.