III. Обзор использования пакета statistica Neural Networks.
В пакете STATISTICA задача непрерывного прогнозирования представляется как задача регрессии. В контексте этой задачи нейронная сеть рассматривается как нелинейная функция, сложность которой контролируется "полупараметрически" - число элементов в сети влияет на сложность решения, но, конечно, аналитик не может видеть явный вид регрессионной функции.
Требуется построить нейронную сеть, вычисляющую выброс свинца в атмосферу в зависимости от количества и вида проезжающего транспорта. Данные хранятся в файле Свинец.xls.
Откройте файл Свинец.xls в пакете Statistica. Появится окно «Открытие файла».
Рис. 4. 33. Окно импорта.
Необходимо выбрать опцию «Импортировать выбранный лист» и выбрать название листа с данными:
Рис. 4. 34. Выбор листа Excel для импорта в пакет Statistica.
В следующем окне необходимо указать реальные параметры данных, которые, как правило, определяются и отображаются автоматически (кроме трех последних чекбоксов).
Рис. 4. 35. Задание области импорта.
После этого импортированные данные отобразятся в окне.
Рис. 4. 36. Результаты импорта.
Запустите пакет анализа при помощи нейронных сетей. Для этого выберите в меню «Анализ» пункт «Нейронные сети».
Рис. 4. 37. Выбор способа обработки данных – «нейронная сеть».
после чего появится окно пакета STATISTICA Neural Networks:
Рис. 4. 38. Стартовое окно анализа «нейронные сети».
Перейдите на вкладку «Быстрый», где необходимо задать тип задачи- Регрессия, и инструмент- Конструктор сетей.
Рис. 4. 39. Запуск конструктора нейросетей.
Далее, нажав кнопку «ОК», вы перейдете в режим выбора выходных (зависимых) и входных (независимых) переменных. В качестве первой выбираем «Свинец», а в качестве последних – количество автомобилей всех категорий. Столбцы «№» и «Улицы» остаются неиспользуемыми.
Рис. 4. 40. Выбор входных и выходных данных для нейросети.
Нажав «Ок» вы снова вернетесь на вкладку «Быстрый». Затем, снова нажав кнопку «Ок», вы переместитесь в окно формирования нейросети. На вкладке «Быстрый» необходимо выбрать тип сети- многослойный персептрон,
Рис. 4. 41. Выбор типа нейросети.
а на вкладке «Элементы» можно указать необходимое количество слоев, количество нейронов в каждом, а также вид функции активации:
Рис. 4. 42. Задание количества слоев и типов нейронов.
Далее, нажав кнопку «Ок», вы переместитесь к диалогу обучения:
Рис. 4. 43. Выбор способа обучения нейосети.
Здесь, нажав на кнопку «Выборки», можно задать количество обучающих, контрольных и тестовых примеров. Если задать число тестовых и контрольных примеров равными нулю, то сеть будет обучаться по всем примерам:
Рис. 4. 44. Определение данных для обучения и тестирования.
Вернувшись в главное окно обучения, можно, нажав на кнопку «Пользователя» и перейдя к вкладке «Интерактивный», потребовать, что бы процесс обучения отражался в виде графика:
Рис. 4. 45. Задание вида графика для демонстрации процесса обучения.
Наконец, нажав на кнопку «Ок», вы запустите процесс обучения, результат которого отобразится на графике:
Рис. 4. 46. Обучение нейросети.
Нажав на кнопку «Ок», вы перейдете к окну результатов, где можете изучать различные характеристики созданной сети, перемещаясь по вкладкам окна:
Рис. 4. 47. Результаты моделирования нейросети.
Так, например, на вкладке «Дополнительно» существует кнопка «Архитектура сети», нажав на которую можно увидеть топологию построенной сети:
Рис. 4. 48. Вид построенной нейросети.
а также кнопка «Наблюдения пользователя», где можно задать сети новые исходные данные и получить ответ уже обученной сети:
легковые авто | грузовые авто | автобусы | легковые авто дизель | грузовые авто дизель | тракторы | автобусы дизель | уровень свинца |
1386 | 174 | 114 | 18 | 84 | 0 | 18 | 128793,3 |
- Лабораторная работа №1. Аналитическое моделирование.
- I.Статичные аналитические модели оптимизации. Построение в среде ms Excel.
- Задача линейного программирования (злп).
- I этап: Анализ словесного описания задачи
- II этап: Построение математической модели
- III этап: Формирование задачи выбора наилучшей стратегии
- Решение задач линейного программирования с помощью надстройки «поиск решений» в среде excel
- Задача оптимального использования ресурсов
- Запуск «Поиска решения»
- Создание отчета по результатам поиска решения
- Индивидуальные варианты заданий.
- II. Статичные аналитические модели, описываемые уравнениями. Построение в среде MathCad.
- Решение уравнений средствами Mathcad
- Построение графиков в MathCad
- Рекомендации по использованию функции root.
- Нахождение корней полинома
- Символьное решение уравнений
- Индивидуальные варианты заданий.
- III. Динамические аналитические модели. Построение в среде MatLab.
- Решение обыкновенных дифференциальных уравнений в matlab.
- Решение систем обыкновенных дифференциальных уравнений с заданными начальными условиями.
- Решение дифференциальных уравнений второго порядка.
- Интегрирование систем линейных дифференциальных уравнений в матричном виде.
- Варианты заданий. Общие задания.
- Индивидуальные задания.
- Лабораторная работа №2. Построение аналитической модели по результатам эксперимента.
- I. Построение модели в среде Excel.
- II. Построение модели в среде Statistica. Общие сведения о программе Statistica.
- III. Построение модели в среде Origin Pro.
- Индивидуальные варианты заданий.
- Лабораторная работа №3. Модели массового обслуживания.
- I. Построение модели в среде AnyLogic.
- Пользовательский интерфейс
- Общая информация о создании моделей в Enterprise Library
- Моделирование одноканальной смо с очередью.
- Моделирование многоканальной смо с очередью.
- Сбор статистики о времени обслуживания клиента.
- Индивидуальные варианты заданий.
- Лабораторная работа №4. Моделирование интеллектуальных систем. Нейросеть обратного распространения ошибки.
- I. Обзор использования пакета Excel Neural Package.
- II. Обзор использования пакета Deductor.
- III. Обзор использования пакета statistica Neural Networks.
- Индивидуальные варианты заданий.
- Лабораторная работа №5. Моделирование интеллектуальных систем. Нейронная сеть для кластеризации.
- I. Теоретические сведения.
- II. Проектирование карты Кохонена в пакете Excel Neural Package.
- III. Проектирование карты Кохонена в пакете Deductor.
- IV. Проектирование карты Кохонена в пакете Statistica.
- Индивидуальные варианты заданий.
- Лабораторная работа №6. Моделирование интеллектуальных систем. Система нечеткого вывода.
- I. Постановка задачи.
- II. Процесс разработки системы
- Индивидуальные варианты заданий.