19. Метод z-буфера
Основывается на использовании дополнительного массива, буфера в памяти, в котором сохраняются координаты точек Z для каждого пиксела растра. Координата Z соответствует расстоянию точек пространственных объектов до плоскости проецирования. Например, она может быть экранной координатой Z в системе экранных координат (X, Y, Z), если ось Z перпендикулярна плоскости экрана.
Рассмотрим алгоритм рисования объектов по этому методу.
Пусть чем ближе точка в пространстве к плоскости проецирования, тем больше значение Z:
● сначала Z-буфер заполняется минимальными значениями;
● затем начинается вывод всех объектов, причем порядок вывода объектов не имеет значения – для каждого объекта выводятся все его пикселы в любом порядке;
● во время вывода каждого пиксела по его координатам (X, Y) находится текущее значение Z в Z-буфере;
● если рисуемый пиксел имеет большее значение Z, чем значение в Z-буфере, то, следовательно, эта точка ближе к наблюдателю. В этом случае пиксел действительно рисуется, а его Z-координата записывается в Z-буфер.
Таким образом, после рисования всех пикселов всех объектов растровое изображение будет состоять из пикселов, которые соответствуют точкам объектов с самыми большими значениями координат Z, т.е. видимые точки ближе всех к зрителю.
Этот метод прост и эффективен благодаря тому, что не требует сортировки объектов или их точек. При рисовании объектов, которые описываются многогранниками или полигональными сетками, манипуляции со значениями Z-буфера легко совместить с выводом пикселов заполнения полигонов плоских граней.
В настоящее время метод Z-буфера используется во многих графических 3d-акселераторах, которые аппаратно реализуют этот метод. Оптимально, если акселератор имеет собственную память для Z-буфера, доступ к которой осуществляется быстрее, чем к оперативной памяти компьютера. Возможности аппаратной реализации используются разработчиками и пользователями компьютерной анимации, позволяя достичь большой скорости прорисовки кадров.
- 3. История развития комп графики
- 7, Системы координат
- 8. Устройства ввода
- Диалоговые
- Полуавтоматически (дигитайзер,
- 12. Системы кодирования цвета.
- 13. Устройства вывода
- 16. Алгоритм вывода окружности
- 17. Удаление невидимых линий и поверхностей
- Алгоритм Для каждого окна:
- 18. Показ с удалением невидимых точек. Классификация методов
- 19. Метод z-буфера
- 20. Алгоритмы построчного сканирования
- 2. Интервальный алгоритм построчного сканирования.
- 21. Алгоритм художника
- 22. Flat – закраска
- 23. Метод Гуро
- Метод Фонга
- 25. Построение поверхностей
- 27. Отсечение нелицевых граней
- 29. Параметрические уравнения линий.
- 30 . Кривые Безье
- 31. Форматы файлов растровой графики.
- 32. Аддитивная цветовая модель rgb
- 33. Субтрактивная цветовая модель cmy
- 34. Аффинные преобразования координат на плоскости:
- 35. Проекции
- Параллельные проекции Перпендикулярное проецирование на картинную плоскость Косоугольное проецирование на картинную плоскость
- 36. Аналитическая модель поверхности
- 37. Векторная полигональная модель
- 38. Воксельная модель
- 39. Равномерная сетка
- 40. Неравномерная сетка. Изолинии
- 41. Визуализация трехмерных изображений Проецирование трехмерных объектов на картинную плоскость
- Уровни визуализации
- Каркасная визуализация
- 42 . Расчет нормали к объекту