logo search

113. Генетические алгоритмы. Основные понятия, принципы и предпосылки генетических алгоритмов. Достоинства и недостатки генетических алгоритмов.

Генетический алгоритм — это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, аналогичных естественному отбору в природе. Является разновидностью эволюционных вычислений, с помощью которых решаются оптимизационные задачи с использованием методов естественной эволюции, таких как наследование, мутации, отбор и кроссинговер. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.

Задача формализуется таким образом, чтобы её решение могло быть закодировано в виде вектора («генотипа») генов, где каждый ген может быть битом, числом или неким другим объектом. В классических реализациях генетического алгоритма (ГА) предполагается, что генотип имеет фиксированную длину. Однако существуют вариации ГА, свободные от этого ограничения.

Некоторым, обычно случайным, образом создаётся множество генотипов начальной популяции. Они оцениваются с использованием «функции приспособленности», в результате чего с каждым генотипом ассоциируется определённое значение («приспособленность»), которое определяет насколько хорошо фенотип, им описываемый, решает поставленную задачу.

При выборе «функции приспособленности» важно следить, чтобы её «рельеф» был «гладким».

Из полученного множества решений («поколения») с учётом значения «приспособленности» выбираются решения (обычно лучшие особи имеют большую вероятность быть выбранными), к которым применяются «генетические операторы», результатом чего является получение новых решений. Для них также вычисляется значение приспособленности, и затем производится отбор («селекция») лучших решений в следующее поколение.

Этот набор действий повторяется итеративно, так моделируется «эволюционный процесс», продолжающийся несколько жизненных циклов (поколений), пока не будет выполнен критерий остановки алгоритма. Таким критерием может быть:

Генетические алгоритмы служат, главным образом, для поиска решений в многомерных пространствах поиска.

Таким образом, можно выделить следующие этапы генетического алгоритма:

  1. Задать целевую функцию (приспособленности) для особей популяции

  2. Создать начальную популяцию

  1. Размножение (скрещивание)

  2. Мутирование

  3. Вычислить значение целевой функции для всех особей

  4. Формирование нового поколения (селекция)

  5. Если выполняются условия остановки, то (конец цикла), иначе (начало цикла).

Создание начальной популяции

Перед первым шагом нужно случайным образом создать начальную популяцию; даже если она окажется совершенно неконкурентоспособной, вероятно, что генетический алгоритм всё равно достаточно быстро переведёт её в жизнеспособную популяцию. Таким образом, на первом шаге можно особенно не стараться сделать слишком уж приспособленных особей, достаточно, чтобы они соответствовали формату особей популяции, и на них можно было подсчитать функцию приспособленности (Fitness). Итогом первого шага является популяция H, состоящая из N особей.

Отбор (селекция)

На этапе отбора нужно из всей популяции выбрать определённую её долю, которая останется «в живых» на этом этапе эволюции. Есть разные способы проводить отбор. Вероятность выживания особи h должна зависеть от значения функции приспособленности Fitness(h). Сама доля выживших s обычно является параметром генетического алгоритма, и её просто задают заранее. По итогам отбора из N особей популяции H должны остаться sN особей, которые войдут в итоговую популяцию H'. Остальные особи погибают.

Выбор родителей

Размножение в генетических алгоритмах требует для производства потомка нескольких родителей, обычно двух.

Можно выделить несколько операторов выбора родителей:

  1. Панмиксия — оба родителя выбираются случайно, каждая особь популяции имеет равные шансы быть выбранной

  2. Инбридинг — первый родитель выбирается случайно, а вторым выбирается такой, который наиболее похож на первого родителя

  3. Аутбридинг — первый родитель выбирается случайно, а вторым выбирается такой, который наиболее не похож на первого родителя

Инбридинг и аутбридинг бывают в двух формах: фенотипной и генотипной. В случае фенотипной формы похожесть измеряется в зависимости от значения функции приспособленности (чем ближе значения целевой функции, тем особи более похожи), а в случае генотипной формы похожесть измеряется в зависимости от представления генотипа (чем меньше отличий между генотипами особей, тем особи похожее).

Размножение (Скрещивание)

Размножение в разных алгоритмах определяется по-разному — оно, конечно, зависит от представления данных. Главное требование к размножению — чтобы потомок или потомки имели возможность унаследовать черты обоих родителей, «смешав» их каким-либо способом.

Почему особи для размножения обычно выбираются из всей популяции H, а не из выживших на первом шаге элементов H'? Дело в том, что главный недостаток многих генетических алгоритмов — отсутствие разнообразия (diversity) в особях. Достаточно быстро выделяется один-единственный генотип, который представляет собой локальный максимум, а затем все элементы популяции проигрывают ему отбор, и вся популяция «забивается» копиями этой особи. Есть разные способы борьбы с таким нежелательным эффектом; один из них — выбор для размножения не самых приспособленных, но вообще всех особей. Однако такой подход вынуждает хранить всех существовавших ранее особей, что увеличивает вычислительную сложность задачи. Поэтому часто применяют методы отбора особей для скрещивания таким образом, чтобы «размножались» не только самые приспособленные, но и другие особи, обладающие плохой приспособленностью. При таком подходе для разнообразия генотипа возрастает роль мутаций.

Мутации

К мутациям относится все то же самое, что и к размножению: есть некоторая доля мутантов m, являющаяся параметром генетического алгоритма, и на шаге мутаций нужно выбрать mN особей, а затем изменить их в соответствии с заранее определёнными операциями мутации.

Критика

Существует несколько поводов для критики насчёт использования генетического алгоритма по сравнению с другими методами оптимизации:

Генетические алгоритмы применяются для решения следующих задач:

  1. Оптимизация функций

  2. Оптимизация запросов в базах данных

  3. Разнообразные задачи на графах 

  4. Настройка и обучение искусственной нейронной сети

  5. Задачи компоновки

  6. Составление расписаний

  7. Игровые стратегии

  8. Теория приближений

  9. Искусственная жизнь

  10. Биоинформатика

  11. Синтез конечных автоматов

  12. Настройка ПИД регуляторов