logo

47. Искусственный интеллект. Определение, назначение, области применения.

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) — наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

Это помогает выстроить качественно новый клиентский опыт и процесс взаимодействия.

Определения ИИ

Интеллект (от лат. intellectus — ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум — качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект — это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение ИИ. Искусственный интеллект — это область информатики, которая занимается разработкой интеллектуальных компьютерных систем, то есть систем, обладающих возможностями, которые мы традиционно связываем с человеческим разумом, — понимание языка, обучение, способность рассуждать, решать проблемы и т. д.

Сейчас к ИИ относят ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ — это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

В связи с эволюцией понятия ИИ необходимо также упомянуть о так называемом AI Effect (эффект ИИ). Эффект ИИ происходит, когда наблюдатели девальвируют значимость демонстрации навыки ИИ каждый раз, когда он реально достигает немыслимого ранее результата. Так, автор Памела МакКордак (Pamela McCorduck) пишет, что часть истории области искусственного интеллекта состоит в том, что каждый раз, когда кто-то придумывает, как научить компьютер делать что-то хорошо — играть в шашки, решать простые, но относительно неформализованные проблемы — доносится хор критиков, что это не доказательство мышления и не ИИ. Еще более емко этот эффект описан информатиком Ларри Теслером, дистиллировавшись в емкую теорему Теслера: «ИИ — это все, что не сделано до сих пор».

С конца 1940-х годов исследования в области моделирования процесса мышления разделились на два независимых подхода: нейрокибернетический и логический.

Подходы и направления

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.

В философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла — Саймона. Поэтому, несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, можно выделить два основных подхода к разработке ИИ:

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

Как показывает иллюстрация, ИИ — это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

В целях нашего исследования мы воспользовались данным подходом и предлагаем следующую классификацию по разделению основных точек развития и применения в области ИИ:

Как видно, две группы использования ИИ подразделены на физический и виртуальный слой, при этом преобладает виртуальный пласт. Развитие применения использования ИИ по этим направлениям приведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Чат-боты перерисовывают ландшафт IT-экосистемы. Они могут заменить собой и приложения, и обслуживающий персонал в компаниях, и даже целые операционные системы. Чат-бот(Chat-bot) — это программа-собеседник, которая предназначена для общения и помощи человеку. При этом на другом конце всегда находится сложная система, базирующаяся на нескольких технологиях ИИ. Чат-боты, ориентированные на бизнес-задачи, могут подобрать лучший рейс, диету, фитнес-тренировку, забронировать гостиницу, выбрать покупку, то есть они представляют собой новую подотрасль обслуживания и ассистирования.

Согласно эксклюзивным данным опроса BI Intelligence, применение чат-ботов уже взлетело в США, где более половины американских пользователей в возрасте от 18 до 55 лет сейчас использует их.

По прогнозам Gartner, цифровые ассистенты будут «знать» нас к 2018 году на основе собранного кликстрима и накопленных больших данных.

По результатам опроса руководителей компаний голосовой помощник является программным обеспечением № 1. Среди помощников, которыми больше всего пользуются на рабочем месте, были названы Siri от Apple, GoogleAssistant, а также Alexa от компании Amazon. Хотя зрелость голосовых помощников пока на низком уровне, примечательно, что их популярность даже выше программных продуктов, связанных с большими данными.

Персональные ассистенты являются своеобразной инкарнацией чат-ботов, хотя и более распространенной по причине того, что технология развивается крупнейшими IT-компаниями. В настоящее время сотни миллионов людей взаимодействуют с персональными цифровыми ассистентами на таких платформах, как Google, Apple, Amazon, Facebook и другие. Эта технология с помощью персональных ассистентов и чат-ботов делает переход от графического пользовательского интерфейса (Graphical User Interface, GUI) к диалоговому интерфейсу (Conversational User Interface, CUI) ключевым трендом ближайших нескольких лет.

По оценке Markets And Markets, объем рынка распознавания образов достигнет 29,98 млрд USD к 2020 году со средним CAGR на уровне 19,1 %. Технологии распознавания образов содержат в себе распознавание паттернов, оптических образов, кода, объектов и цифровых фотографий. Они либо по отдельности, либо в интегрированном виде используются в таких сферах, как безопасность и наблюдение, сканирование и создание изображений, маркетинг и реклама, дополненная реальность и поиск изображений.

Ключевым драйвером этого рынка является уход всех процессов как в бизнесе, так и в потребительском сегменте в облака, а также рост влияния Интернета, смартфонов, социальных медиа. Акторами этого рынка являются такие крупные корпорации, как NEC, Google, Honeywell, Hitachi и Qualcomm Technologies. Также присутствует множество меньших по размеру игроков, таких как LTU Technologies, Attrasoft, Blippar и SLYCE, и таких вендоров, как Catchoom и Wikitude.

Мировой рынок распознавания речи оценен BCC Research в колоссальные $ 90,3 млрд в 2015 году. Ожидается, что этот рынок вырастет со $ 104,4 млрд в 2016 до $ 184,9 млрд в 2021 со средними темпами (CAGR) на уровне 12,1 % за период 2016–2021.

Рынок обработки естественного языка (Natural Language Processing, NLP) оценивается Market And Markets в $ 7,63 млрд в 2016 году и вырастет до $ 16,07 млрд к 2021, с CAGR на уровне 16 1 %. Основными драйверами компания считает возрастающий спрос на более продвинутый уровень пользовательского опыта, рост пользования умными девайсами, рост инвестиций в здравоохранение, растущее применение сетевых и облачных бизнес-приложений и рост M2M-технологий.