logo search
ОИТ_Учебник

7.1.3.2 Метод Ньютона

Алгоритм метода Ньютона состоит в следующем.

1. В начальной точке х [0] вычисляется вектор

p[0] - H-1(x[0])f’([0]).

2. На k-й итерации определяются шаг аk и точка х[k+1].

3. Вычисляется величина f(х[k+1]).

4. Проверяются условия выхода из подпрограммы, реализующей данный алгоритм. Эти условия аналогичны условиям выхода из подпрограммы при методе наискорейшего спуска. Если эти условия выполняются, осуществляется прекращение вычислений. В противном случае вычисляется новое направление

р[k+1] H-1(x[k])f’([k])

и осуществляется переход к следующей итерации.

Количество вычислений на итерации методом Ньютона, как правило, значительно больше, чем в градиентных методах. Это объясняется необходимостью вычисления и обращения матрицы вторых производных целевой функции. Однако на получение решения с достаточно высокой степенью точности с помощью метода Ньютона обычно требуется намного меньше итераций, чем при использовании градиентных методов. В силу этого метод Ньютона существенно более эффективен. Он обладает сверхлинейной или квадратичной скоростью сходимости в зависимости от требований, которым удовлетворяет минимизируемая функция f(x). Тем не менее в некоторых задачах трудоемкость итерации методом Ньютона может оказаться очень большой за счет необходимости вычисления матрицы вторых производных минимизируемой функции, что потребует затрат значительного количества машинного времени.

В ряде случаев целесообразно комбинированное использование градиентных методов и метода Ньютона. В начале процесса минимизации, когда точка х[0] находится далеко от точки экстремума х*, можно применять какой-либо вариант градиентных методов. Далее, при уменьшении скорости сходимости градиентного метода можно перейти к методу Ньютона.