7.1.2.1 Минимизация функций многих переменных. Основные положения
Градиентом дифференцируемой функции f(x) в точке х[0] называется n-мерный вектор f(x[0]), компоненты которого являются частными производными функции f(х), вычисленными в точке х[0], т. е.
f'(x[0]) = (дf(х[0])/дх1, …, дf(х[0])/дхn)T.(7.11)
Этот вектор перпендикулярен к плоскости, проведенной через точку х[0] , и касательной к поверхности уровня функции f(x), проходящей через точку х[0] .В каждой точке такой поверхности функция f(x) принимает одинаковое значение. Приравнивая функцию различным постоянным величинам С0, С1, ... , получим серию поверхностей, характеризующих ее топологию (рис. 7.8).
Рис. 7.8 ‑ Градиент
Вектор-градиент направлен в сторону наискорейшего возрастания функции в данной точке. Вектор, противоположный градиенту
((х[0])), называется антиградиентом и направлен в сторону наискорейшего убывания функции. В точке минимума градиент функции равен нулю. На свойствах градиента основаны методы первого порядка, называемые также градиентным и методами минимизации. Использование этих методов в общем случае позволяет определить точку локального минимума функции.
Очевидно, что если нет дополнительной информации, то из начальной точки х[0] разумно перейти в точку х [1], лежащую в направлении антиградиента - наискорейшего убывания функции. Выбирая в качестве направления спуска р[k] антиградиент (х[k]) в точке х[k], получаем итерационный процесс вида
х[k+1] = x[k]‑akf'(x[k]), аk > 0; k=0, 1, 2, ...
В координатной форме этот процесс записывается следующим образом:
xi[k+1]=хi[k] ‑ akf(x[k])/xi
i = 1, ..., n; k= 0, 1, 2,...
В качестве критерия останова итерационного процесса используют либо выполнение условия малости приращения аргумента || x[k+l] - x[k] || <= , либо выполнение условия малости градиента
|| (x[k+l]) || <= ,
Здесь и - заданные малые величины.
Возможен и комбинированный критерий, состоящий в одновременном выполнении указанных условий. Градиентные методы отличаются друг от друга способами выбора величины шага аk.
При методе с постоянным шагом для всех итераций выбирается некоторая постоянная величина шага. Достаточно малый шаг аk обеспечит убывание функции, т. е. выполнение неравенства
f(х[k+1]) = f(x[k] – akf’(x[k])) < f(x[k]).
Однако это может привести к необходимости проводить неприемлемо большое количество итераций для достижения точки минимума. С другой стороны, слишком большой шаг может вызвать неожиданный рост функции либо привести к колебаниям около точки минимума (зацикливанию). Из-за сложности получения необходимой информации для выбора величины шага методы с постоянным шагом применяются на практике редко.
Более экономичны в смысле количества итераций и надежности градиентные методы с переменным шагом, когда в зависимости от результатов вычислений величина шага некоторым образом меняется. Рассмотрим применяемые на практике варианты таких методов.
- Основы информационных технологий
- Оглавление
- Предисловие
- Современные информационные технологии
- 1.1 История, современное состояние и перспективы развития вычислительной техники
- 1.2 Элементная база, архитектура, сетевая компоновка, производительность
- 1.3 Понятие информации. Классификация и виды информационных технологий
- Основные свойства информационных технологий.
- 1 .4 Операционные системы
- 2 Основные программные средства информационных технологий
- 2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- 2.2. Графические редакторы
- 2.3. Электронные таблицы
- 2.4. Сервисные инструментальные программные средства
- 2.5. Системы математических вычислений MatLab
- 2.6 Система подготовки презентаций
- 3 Сетевые технологии и интернет
- 3.1 Классификация компьютерных сетей
- 3.2 Семиуровневая модель структуры протоколов связи
- 2.3. Взаимодействие компьютеров в сети
- 3.3 Организационная структура Internet
- 3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- 3.5 Языки разметки гипертекста html и xml
- 3.6 Скриптовые языки программирования
- 4 Системы управления базами данных
- 4.1. Классификация систем управления базами данных
- 4.2 Модели данных
- 4.3 Моделирование баз данных
- 4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- 4.5 Общая характеристика субд ms Access
- 4.6 Основные объекты ms Access
- 4.7 Основы языка sql
- Контрольные вопросы
- 5 Защита информации при использовании информационных технологий
- 5.1 Основы информационной безопасности
- 5.2. Методы и средства защиты информации
- 5.3 Защита от несанкционированного доступа к данным
- 5.4 Классы безопасности компьютерных систем
- 5.5 Основные аспекты построения системы информационной безопасности
- 6 Математическое моделирование и численные методы
- 6.1 Математические модели и численные методы решения задач в различных предметных областях
- 6.2 Численное дифференцирование и интегрирование
- 6.2.1 Особенность задачи численного дифференцирования
- 6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- 6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- 6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- 6.2.5 Постановка задачи численного интегрирования
- 6.2.6 Квадратурные формулы Ньютона-Котеса
- 6.2.7 Формула трапеций
- 6.2.8 Формула Симпсона
- 6.2.9 Оценка точности квадратурных формул
- 6.3 Методы решения обыкновенных дифференциальных уравнений
- 6.3.1 Задача Коши и краевая задача
- 6.3.1.1 Классификация уравнений
- 6.3.1.2 Задача Коши
- 6.3.2 Одношаговые методы решения задачи Коши
- 6.3.2.1 Метод Эйлера
- 6.3.2.2 Модифицированный метод Эйлера
- 6.3.2.3 Метод Рунге-Кутта четвертого порядка
- 6.3.2.4 Погрешность решения и выбор шага
- 6.3.3 Многошаговые методы решения задачи Коши
- 6.3.3.1 Многошаговые методы
- 6.3.3.2 Метод Адамса
- 6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- 6.3.3.4 Общая характеристика многошаговых методов
- 6.3.4 Краевая задача и метод стрельбы
- 6.3.4.1 Краевая задача
- 6.3.4.2 Метод стрельбы
- 6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- 6.4 Решение дифференциальных уравнений в чстных производных
- 6.4.1 Краткие теоретические сведения
- 6.4.2 Классификация уравнений по математической форме
- 6.4.3 Основы метода конечных разностей
- 6.4.3.1 Построение сетки
- 6.4.3.2 Аппроксимация уравнения эллиптического типа
- 6.4.3.3 Аппроксимация уравнения гиперболического типа
- 6.4.3.4 Аппроксимация уравнения параболического типа
- 6.4.3.5 Погрешность решения
- 6.4.4 Основы метода конечных элементов
- 6.4.4.1. Формирование сетки
- 6.4.4.2 Конечно-элементная аппроксимация
- 6.4.4.3 Построение решения
- 6.6 Элементы математической статистики
- 6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- 6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- 6.6.3 Средние величины и показатели вариации
- 6.6.4 Средняя арифметическая и ее свойства
- 6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- 6.6.6 Коэффициент вариации
- 6.6.7 Структурные средние
- 6.6.8 Законы распределения случайных величин
- 6.6.9 Статистические гипотезы
- 7 Методы оптимизации и системы поддержки принятия решений
- 7.1 Характеристика методов решения задач оптимизации
- 7.1.1 Численные методы безусловной оптимизации нулевого порядка
- 7.1.1.1 Основные определения
- 7.1.1.2 Классификация методов
- 7.1.1.3 Общая характеристика методов нулевого порядка
- 7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- 7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- 7.1.1.6 Метод вращающихся координат (метод Розенброка)
- 7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- 7.1.2 Численные методы безусловной оптимизации первого порядка
- 7.1.2.1 Минимизация функций многих переменных. Основные положения
- 7.1.2.2 Метод наискорейшего спуска
- 7.1.2.3 Метод сопряженных градиентов
- 7.1.3 Численные методы безусловной оптимизации второго порядка
- 7.1.3.1 Особенности методов второго порядка
- 7.1.3.2 Метод Ньютона
- 7.2 Линейное программирование
- 7.2.1 Транспортная задача линейного программирования
- 7.2.1.1 Постановка задачи
- 7.2.1.2 Венгерский метод
- 7.2.1.3 Метод потенциалов
- 7.3 Прямые методы условной оптимизации
- 7.3.1 Основные определения
- 7.3.2 Метод проекции градиента
- 7.3.3 Комплексный метод Бокса
- 7.4 Методы штрафных функций
- 7.4.1 Основные определения
- 7.4.2 Методы внутренних штрафных функций
- 7.4.3 Методы внешних штрафных функций
- 7.4.4 Комбинированные алгоритмы штрафных функций
- 7.5 Информационные технологии поддержки принятия решений
- 7.6 Информационные технологии экспертных систем Характеристика и назначение
- Список литературы