Общие сведения
Сжатие сокращает объем пространства, требуемого для хранения файлов в ЭВМ, и количество времени, необходимого для передачи информации по каналу установленной ширины пропускания. Это есть форма кодирования. Другими целями кодирования являются поиск и исправление ошибок, а также шифрование. Процесс поиска и исправления ошибок противоположен сжатию – он увеличивает избыточность данных, когда их не нужно представлять в удобной для восприятия человеком форме. Удаляя из текста избыточность, сжатие способствует шифрованию, что затрудняет поиск шифра доступным для взломщика статистическим методом.
В этом подразделе рассматривается обратимое сжатие или сжатие без наличия помех, где первоначальный текст может быть в точности восстановлен из сжатого состояния. Необратимое или ущербное сжатие используется для цифровой записи аналоговых сигналов, таких как человеческая речь или рисунки. Обратимое сжатие особенно важно для текстов, записанных на естественных и на искусственных языках, поскольку в этом случае ошибки обычно недопустимы. Хотя первоочередной областью применения рассматриваемых методов есть сжатие текстов, однако, эта техника может найти применение и в других случаях, включая обратимое кодирование последовательностей дискретных данных.
Существует много веских причин осуществлять сжатие данных, так как более быстрая передача данных и сокращение пространства для их хранения позволяют сберечь значительные средства и зачастую улучшить показатели ЭВМ. Сжатие, вероятно, будет оставаться в сфере внимания из-за все возрастающих объемов хранимых и передаваемых в ЭВМ данных, кроме того, его можно использовать для преодоления некоторых физических ограничений, таких как, например, сравнительно низкая ширина пропускания телефонных каналов.
Существуют два основных способа проведения сжатия: статистический и словарный. Лучшие статистические методы применяют кодирование Хаффмана, лучшие словарные – метод Зива-Лемпела. В статистическом сжатии каждому символу присваивается код, основанный на вероятности его появления в тексте. Высоковероятные символы получают короткие коды, и наоборот. В словарном методе группы последовательных символов или «фраз» заменяются кодом. Замененная фраза может быть найдена в некотором «словаре». Только в последнее время было показано, что любая практическая схема словарного сжатия может быть сведена к соответствующей статистической схеме сжатия, и найден общий алгоритм преобразования словарного метода в статистический. Поэтому при поиске лучшего сжатия статистическое кодирование обещает быть наиболее плодотворным, хотя словарные методы и привлекательны своей быстротой.
Далее более подробно рассмотрим кодирование Хаффмана.
-
Содержание
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67