Очередь
Очередь – это структура данных, представляющая собой последовательность элементов, образованная в порядке их поступления. Каждый новый элемент размещается в конце очереди; элемент, стоящий в начале очереди, выбирается из нее первым. Здесь используется принцип «первым пришел – первым вышел» (FIFO: First Input – First Output).
Очередь можно реализовывать как статическую структуру данных в виде одномерного массива, а можно как динамическую структуру – в виде линейного списка.
При реализации очереди в виде статического массива необходимо резервировать массив, длина которого равна максимально возможной длине очереди, что приводит к неэффективному использованию памяти.
При такой реализации начало очереди будет располагаться в первом элементе массива, а рост очереди будет осуществляться в сторону увеличения индексов. Однако, поскольку добавление элементов происходит в один конец, а выборка – из другого конца очереди, то с течением времени будет происходить миграция элементов очереди из начала массива в сторону его конца. Это может привести к быстрому исчерпанию массива и невозможности добавлении новых элементов в очередь при наличии свободных мест в начале массива. Предотвратить это можно двумя способами:
-
после извлечения очередного элемента из начала очереди осуществлять сдвиг всей очереди на один элемент к началу массива. При этом необходимо отдельно хранить значение индекса элемента массива, являющимся концом очереди (начало очереди всегда в первом элементе массива);
-
представить массив в виде циклической структуры, где первый элемент массива следует за последним. Элементы очереди располагаются в «круге» элементов массива в последовательных позициях, конец очереди находится по часовой стрелке на некотором расстоянии от начала. При этом необходимо отдельно хранить значение индекса элемента массива, являющимся началом очереди, и значение индекса элемента массива, являющимся концом очереди. Когда происходит добавление в конец или извлечение из начала очереди, осуществляется смещение значений этих двух индексов по часовой стрелке.
С точки зрения экономии вычислительных ресурсов более предпочтителен второй способ. Однако здесь усложняется проверка на пустоту очереди и контроль переполнения очереди – индекс конца очереди не должен «набегать» на индекс начала.
Очередь как динамическую структуру данных легко организовать на основе линейного списка. Поскольку работа идет с обоими концами очереди, то предпочтительно будет использовать линейный двунаправленный список. Хотя, как уже говорилось при описании этого списка, для работы с ним достаточно иметь один указатель на любой элемент списка, здесь целесообразно хранить два указателя – один на начало списка (откуда извлекаем элементы) и один на конец списка (куда добавляем элементы). Если очередь пуста, то списка не существует, и указатели принимают значение nil.
Поскольку очередь, по своей сути, является структурой с изменяемым количеством элементов, то основное внимание уделим динамической реализации очереди. Как уже говорилось выше, для такой реализации целесообразно использовать линейный двунаправленный список. Поэтому, при описании динамической реализации будем использовать определения и операции, приведенные в п. 2.2.6.2.
Рисунок 9. Очередь и ее организация
Описание элементов очереди аналогично описанию элементов линейного двунаправленного списка, где DataType является типом элементов очереди. Поэтому здесь приводить его не будем, но введем дополнительно два указателя на начало и конец очереди:
var
ptrBeginQueue,
ptrEndQueue: PElement;
Основные операции, производимые с очередью:
-
добавить элемент;
-
извлечь элемент;
-
очистить очередь;
-
проверка пустоты очереди.
Реализацию этих операций приведем в виде соответствующих процедур, которые, в свою очередь, используют процедуры операций с линейным двунаправленным списком.
procedure InQueue(NewElem: TypeData;
var ptrBeginQueue, ptrEndQueue: PElement);
{Добавление элемента в очередь}
begin
Ins_LineDoubleList(NewElem, ptrBeginQueue, ptrEndQueue);
end;
procedure FromQueue(var NewElem: TypeData;
var ptrBeginQueue: PElement);
{Извлечение элемента из очереди}
begin
if ptrBeginQueue <> nil then begin
NewElem := ptrEndQueue^.Data;
Del_LineDoubleList(ptrBeginQueue, ptrBeginQueue);
end;
end;
procedure ClearQueue(var ptrBeginQueue,
ptrEndQueue: PElement);
{Очистка очереди}
begin
while ptrBeginQueue <> nil do
Del_LineDoubleList(ptrBeginQueue, ptrBeginQueue);
ptrEndQueue := nil;
end;
function EmptyQueue(var ptrBeginQueue: PElement): boolean;
{Проверка пустоты очереди}
begin
if ptrBeginQueue = nil then EmptyQueue := true
else EmptyQueue := false;
end;
-
Дек
Дек – это структура данных, представляющая собой последовательность элементов, в которой можно добавлять и удалять в произвольном порядке элементы с двух сторон. Первый и последний элементы дека соответствуют входу и выходу дека.
Выделяют ограниченные деки:
-
дек с ограниченным входом – из конца дека можно только извлекать элементы;
-
дек с ограниченным выходом – в конец дека можно только добавлять элементы.
Данная структура является наиболее универсальной из рассмотренных выше линейных структур. Накладывая дополнительные ограничения на операции с началом и/или концом дека, можно осуществлять моделирование стека и очереди.
Дек также можно реализовывать как статическую структуру данных в виде одномерного массива, а можно как динамическую структуру – в виде линейного списка.
Поскольку в деке, как и в очереди, осуществляется работа с обоими концами структуры, то целесообразно использовать те же подходы к организации дека, что применялись и для очереди (см. п. 2.2.10).
Рисунок 10. Дек и его организация
Описание элементов дека аналогично описанию элементов линейного двунаправленного списка, где DataType является типом элементов дека. Поэтому здесь приводить его не будем. Но, как и для очереди, введем дополнительно два указателя на начало и конец дека:
var
ptrBeginDeck,
ptrEndDeck: PElement;
Основные операции, производимые с деком:
-
добавить элемент в начало;
-
добавить элемент в конец;
-
извлечь элемент из начала;
-
извлечь элемент из конца;
-
очистить дек;
-
проверка пустоты дека.
Реализацию этих операций приведем в виде соответствующих процедур, которые, в свою очередь, используют процедуры операций с линейным двунаправленным списком.
procedure InBeginDeck(NewElem: TypeData;
var ptrBeginDeck: PElement);
{Добавление элемента в начало дека}
begin
InsFirst_LineDoubleList(NewElem, ptrBeginDeck);
end;
procedure InEndDeck(NewElem: TypeData;
var ptrBeginDeck, ptrEndDeck: PElement);
{Добавление элемента в конец дека}
begin
Ins_LineDoubleList(NewElem, ptrBeginDeck, ptrEndDeck);
end;
procedure FromBeginDeck(NewElem: TypeData;
var ptrBeginDeck: PElement);
{Извлечение элемента из начала дека}
begin
if ptrBeginDeck <> nil then begin
NewElem := ptrBeginDeck^.Data;
Del_LineDoubleList(ptrBeginDeck, ptrBeginDeck); {удал-м 1-ый}
end;
end;
procedure FromEndDeck(NewElem: TypeData,
var ptrBeginDeck, ptrEndDeck: PElement);
{Извлечение элемента из конца дека}
begin
if ptrBeginDeck <> nil then begin
NewElem := ptrEndDeck^.Data;
Del_LineDoubleList(ptrBeginDeck, ptrEndDeck); {удаляем конец}
end;
end;
procedure ClearDeck(var ptrBeginDeck: PElement);
{Очистка дека}
begin
while ptrBeginDeck <> nil do
Del_LineDoubleList(ptrBeginDeck, ptrBeginDeck);
ptrEndDeck := nil;
end;
function EmptyDeck(var ptrBeginDeck: PElement): boolean;
{Проверка пустоты дека}
begin
if ptrBeginDeck = nil then EmptyDeck := true
else EmptyDeck := false;
end;
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67