Динамическое программирование
Этот метод имеет под собой достаточно серьезную научную основу, однако его суть вполне можно объяснить на простом примере чисел Фибоначчи.
Вычислить N чисел в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, … , где первые два члена равны единице, а все остальные представляют собой сумму двух предыдущих, N меньше 100.
Самый очевидный способ «решения» задачи состоит в написании рекурсивной функции примерно следующего вида:
function F(X: integer): longint;
begin
if (X = 1) or (X = 2) then F := 1
else F := F(X-1) + F(X-2)
end;
При этом на шестом-седьмом десятке программе перестанет хватать временных ресурсов самой современной вычислительной машины. Это происходит по следующим причинам.
Для вычисления F(40) в начале вычисляется F(39) и F(38). Причем F(38) вычисляется заново, не используя значение, которое было вычислено, когда считалось F(39).
То есть значение функции при одном и том же значении аргумента считается много раз. Если исключить повторный счет, то функция станет заметно эффективней. Для этого приходится завести массив, в котором хранятся значения нашей функции:
var D: array[1..100] of longint;
Сперва массив заполняется значениями, которые заведомо не могут быть значениями функции (чаще всего, это «-1», но в вполне пригоден 0). При попытке вычислить какое-то значение, программа смотрит, не вычислялось ли оно ранее, и если да, то берет готовый результат.
Функция принимает следующий вид:
function F(X: integer): longint;
begin
if D[X] = 0 then
if (X=1) or (X=2) then D[X] := 1
else D[X] := F(X-1) + F(X-2);
F := D[X];
end;
Этот подход динамического программирования называется подходом «сверху вниз». Он запоминает решенные задачи, но очередность решения задач все равно контролирует рекурсия.
Можно еще более упростить решение, убрав рекурсию вообще. Для этого необходимо сменить нисходящую логику рассуждения (от того, что надо найти, к тривиальному) на восходящую (соответственно наоборот). В этой задаче такой переход очевиден и описывается простым циклом:
D[1] := 1; D[2] := 1;
For i := 3 to N do
D[i] := D[i-1] + D[i-2];
Здесь использован подход «снизу вверх». Чаще всего, такой способ раза в три быстрее. Однако в ряде случаев такой метод приводит к необходимости решать большее количество подзадач, нежели при рекурсии.
Очень часто для его написания приходится использовать как промежуточный результат нисходящую форму, а иногда безрекурсивная (итеративная) форма оказывается чрезвычайно сложной и малопонятной.
Таким образом, если алгоритм превышает отведенное ему время на тестах большого объема, то необходимо осуществлять доработку этого алгоритма.
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67