Сортировка распределением
Сортировка распределением интересна тем, что она сортирует массив, не сравнивая элементы друг с другом.
Рассмотрим сначала вырожденный случай сортировки распределением, а затем более общий.
При вырожденном распределении предполагается, что каждый элемент массива может принимать m (например, от 1 до m) фиксированных значений. Заведем массив Amount размерностью m, первоначально обнулив его. Затем для каждого i подсчитаем количество элементов массива A, равных i, и занесем это число в Amount[i]. После чего, в первые Amount[1] элементов массива A запишем 1, в следующие Amount[2] элементов массива A запишем 2 и т.д. до тех пор, пока не дойдем до конца массива A (заметим, что в то же время мы окажемся в конце массива Amount).
Теперь запишем алгоритм.
procedure DispersSort(n, m: integer;
var A: array[1..n] of integer);
{Процедура сортировки вырожденным распределением}
var
i, j, k: integer;
Amount: array[1..m] of integer;
begin
{Обнуляем массив Amount}
for i := 0 to m do Amount[i] := 0;
{Заполняем массив Amount}
for i := 1 to n do Amount[A[i]] := Amount[A[i]] + 1;
{Заполняем массив A}
k := 1;
for i := 0 to M do
for j := 1 to Amount[i] do begin
A[k] := i;
k := k + 1;
end;
end;
Временную сложность метода можно оценить как O(m+n) (m появляется в сумме, так как изначально надо обнулить массив Amount, а это требует m действий). Пространственная сложность в этом случае пропорциональна O(m), поскольку требуется дополнительная память размером порядка m.
Недостатком этого метода является то, что требуется дополнительная память размером порядка m, а это может оказаться недопустимым из-за большого значения m. Но, если m>>n, то есть способ уменьшить объем требуемой дополнительной памяти, который сейчас и рассмотрим, как общий случай сортировки распределением.
Пусть выделяется дополнительная память размером b+n, а элементы массива могут принимать значения от 0 до s, причем s>>b.
Каждый элемент этого массива можно представить в b-ичной системе счисления и разбить на k цифр этой системы счисления.
Заведем списки L1, L2… Lb общей суммарной длиной порядка n (это можно сделать, ограничившись дополнительной памятью O(b+n)).
Тогда алгоритм сортировки распределением можно представить следующим образом:
for i := k downto 1 do begin
for j := 1 to n do begin
if p = i-ой цифре A[j] в b-ной системе счисления then
занести A[j] в L[p] список;
end;
Очистить массив A;
for j := 1 to b do
Дописать элементы L[j] в массив A;
end;
Итак, как видно из приведенной выше программы, на каждом шаге метода производится сортировка элементов массива по значению i-ого разряда. При этом производится промежуточное распределение элементов массива по спискам в зависимости от значения соответствующего разряда этих элементов. Во время распределения очень важно сохранить при записи в списки порядок следования элементов, чтобы не нарушить порядок, достигнутый на предыдущих шагах.
Индукцией по i легко доказать, что после i шагов любые два числа, отличающиеся только в i последних разрядах, идут в правильном порядке.
Достигнув i=1, получаем полностью отсортированный массив.
Как нетрудно заметить, если положить s=b, то отпадает необходимость заводить списки и производить запись в них: в j-ый список будут попадать только числа, равные j. В этом случае достаточно хранить лишь размеры списков, то есть подсчитать количество элементов, равных j, для всех j от 1 до s. А потом просто заново заполнить массив A в соответствии с этими количествами, то есть получаем вырожденную сортировку.
Рассмотрим на примере задачу сортировки 12 целых чисел из интервала от 0 до 99, то есть n=12, b=10 (десятичная система счисления), s=99, k=2 (два разряда). При этом будем считать, что числа, содержащие только один разряд, дополняются слева нулем, то есть число «0» будет «00», число «1» будет «01» и т.д.
Рисунок 48. Сортировка распределением
Интересно, что временная сложность этого алгоритма пропорциональна O(k*n), а если учесть, что k фактически является константой, то получаем гарантированную (минимальную, среднюю и максимальную) линейную сложность. Но недостатком этого метода является необходимость выделять дополнительную память размером порядка b+n. Если бы не это ограничение, можно было бы считать этот метод самым эффективным при больших значениях n.
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67