Бинарный поиск
Этот алгоритм поиска предполагает, что множество хранится, как некоторая упорядоченная (например, по возрастанию) последовательность элементов, к которым можно получить прямой доступ посредством индекса. Фактически речь идет о том, что множество хранится в массиве и этот массив отсортирован.
Суть метода заключается в следующем. Областью поиска (L, R) назовем часть массива с индексами от L до R, в которой предположительно находится искомый элемент. Сначала областью поиска будет часть массива (L, R), где L = 1, а R = n, то есть вся заполненная элементами множества часть массива. Теперь найдем индекс среднего элемента m := (L+R) div 2. Если Key > Am, то можно утверждать (поскольку массив отсортирован), что если Key есть в массиве, то он находится в одном из элементов с индексами от L + m до R, следовательно, можно присвоить L := m+1, сократив область поиска. В противном случае можно положить R := m. На этом заканчивается первый шаг метода. Остальные шаги аналогичны.
На каждом шаге метода область поиска будет сокращаться вдвое. Как только L станет равно R, то есть область поиска сократится до одного элемента, можно будет проверить этот элемент на равенство искомому и сделать вывод о результате поиска.
Оформим описанный алгоритм в виде функции на Паскале.
function BinarySearch(Key: ItemType, n: integer;
var A: array[1..n] of ItemType): boolean;
{Функция двоичного поиска,}
{если элемент найден, то возвращает значение true, иначе - false}
var
L, m, R: integer;
begin
L := 1; R := n;
while (L <> R) do begin
m := (L+R) div 2;
if Key > A[m] then L := m+1
else R := m;
end;
if A[L]=Key then BinarySearch := true
else BinarySearch := false;
end;
Рисунок 26. Бинарный поиск
Как уже было сказано, область поиска на каждом шаге сокращается вдвое, а это означает сложность алгоритма пропорциональную O(log n).
-
Содержание
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67