Быстрая сортировка (Хоара)
Эту сортировку называют быстрой, потому что на практике она оказывается самым быстрым алгоритмом сортировки из тех, что оперируют сравнениями.
Этот алгоритм является ярким примером реализации принципа «разделяй и властвуй». Как показывают теоретические выкладки, наиболее эффективным в общем случае оказывается разделение задачи на две равные по сложности части, что здесь и делается.
На каждом шаге алгоритма сначала выбирается «средний» элемент, затем переставляются элементы массива так, что массив разделился на две части. Первая часть содержит элементы, меньше «среднего» и, возможно, равные ему. Вторая часть содержит элементы больше «среднего» и, возможно, равные ему. После такого деления массива остается только отсортировать его части по отдельности, с которыми поступаем аналогично (делим на две части). И так до тех пор, пока эти части не окажутся состоящими из одного элемента, а массив из одного элемента всегда отсортирован. В случае, когда массив содержит только одинаковые элементы, выбор «среднего» элемента не производится и сортировка не осуществляется.
Разделение массива на две части производится следующим образом. Устанавливаем один курсор на левую границу массива, а второй – на правую границу. Затем осуществляем перемещение курсоров навстречу друг другу до тех пор, пока они не пересекутся. При перемещении курсоров сравниваем значения текущих элементов со «средним». Находим левый текущий элемент, больший «среднего», и правый текущий элемент, меньше «среднего» (то есть, элементы, которые находятся «не на своем месте»). Осуществляем обмен этих элементов.
Выбор «среднего» – задача непростая, так как требуется, не производя сортировку, найти элемент со значением максимально близким к среднему. Здесь, конечно, можно просто выбрать произвольный элемент (обычно выбирают элемент, стоящий в середине сортируемого подмассива), но пойдем чуть дальше: из трех элементов (самого левого, самого правого и стоящего посередине) выберем средний.
procedure HoarSort(n: integer;
var A: array[1..n] of integer);
{Процедура сортировки Хоара}
function FindMedium(L, R: integer): integer;
{Нахождение индекса "среднего" элемента}
var
MedIndex, {индекс "среднего" элемента}
Left, Right, Median: integer;
begin
Left := A[L]; Right := A[R]; Median := A[(L+R) div 2];
{Берем два крайних элемента и один из середины массива}
if (Left = Median) and (Median = Right) then begin
{Если все три элемента одинаковы, то ищем неравный им}
i := L;
while (A[i] = Median) and (i < R) do i := i + 1;
{Если найден неравный элемент, то берем его третьим}
if A[i] <> Median then Median := A[i];
end;
if (Left = Median) and (Median = Right) then begin
{Все элементы массива одинаковы и "средний" не найден}
FindMedium := 0;
end else begin
{Выбираем "средний" из трех разных элементов}
if Left <= Median then
if Median <= Right then
MedIndex := (L+R) div 2
else
if Left <= Right then MedIndex := R
else MedIndex := L
else
if Left >= Right then
MedIndex := (L+R) div 2
else
if Left >= Right then
MedIndex := R
else
MedIndex := L;
FindMedium := MedIndex;
end;
end; {FindMedium}
procedure QuickSort(L, R: integer);
var
MedItem, {значение "среднего" элемента}
MedIndex, {индекс "среднего" элемента}
Tmp, i, j: integer; {вспомогательные переменные}
begin
MedIndex := FindMedium(L, R);
if MedIndex <> 0 then begin
{Сортируем, если найден "средний" элемент}
MedItem := A[MedIndex];
{Разбиваем массив на две части}
i := L; j := R;
while i <= j do begin
{Ищем первый слева элемент, больший, чем MedItem}
while A[i] < MedItem do i := i + 1;
{Ищем первый справа элемент, меньший, чем MedItem}
while A[j] > MedItem do j := j - 1;
if i <= j then begin {Меняем местами найденные элементы}
Tmp := A[i];
A[i] := A[j];
A[j] := Tmp;
i := i + 1;
j := j - 1;
end;
end;
{Сортируем две части массива по отдельности}
if L < j then QuickSort(L, j);
if i < R then QuickSort(i, R);
end;
end; {QuickSort}
begin {HoarSort}
QuickSort(1, n);
end; {HoarSort}
Заметим, что все-таки предложенный способ нахождения «среднего» элемента подмассива в худшем случае приведет к тому, что после деления, например правая часть поделенного массива, будет содержать один элемент, а левая все остальные. В этом случае получается порядка n рекурсивных вызовов. Это значит, что необходимо будет завести дополнительную память размером пропорциональным n и пространственная сложность Vmax(n) будет пропорциональна O(n). В среднем и в лучшем случае, можно говорит о пространственной сложности, пропорциональной O(log n).
Рисунок 46. Быстрая сортировка Хоара
В худшем случае этот алгоритм дает временную сложность Tmax(n), пропорциональную O(n2) (для случая, когда все выборки «среднего» элемента оказались неудачны), но как показывают теоретические исследования, вероятность такого случая очень мала. В среднем же и в лучшем случае получим временную сложность T(n), пропорциональную O(n*log n).
- Содержание
- Основные сведения
- Понятия алгоритма и структуры данных
- Анализ сложности и эффективности алгоритмов и структур данных
- Структуры данных
- Элементарные данные
- Данные числовых типов
- Данные целочисленного типа
- Данные вещественного типа
- Операции над данными числовых типов
- Данные символьного типа
- Данные логического типа
- Данные типа указатель
- Линейные структуры данных
- Множество
- Линейные списки
- Линейный однонаправленный список
- Линейный двунаправленный список
- Циклические списки
- Циклический однонаправленный список
- Циклический двунаправленный список
- Разреженные матрицы
- Матрицы с математическим описанием местоположения элементов
- Матрицы со случайным расположением элементов
- Очередь
- Нелинейные структуры данных
- Мультисписки
- Слоеные списки
- Спецификация
- Реализация
- Деревья
- Общие сведения
- Обходы деревьев
- Спецификация двоичных деревьев
- Реализация
- Основные операции
- Организация
- Представление файлов b-деревьями
- Основные операции
- Общая оценка b-деревьев
- Алгоритмы обработки данных
- Методы разработки алгоритмов
- Метод декомпозиции
- Динамическое программирование
- Поиск с возвратом
- Метод ветвей и границ
- Метод альфа-бета отсечения
- Локальные и глобальные оптимальные решения
- Алгоритмы поиска
- Поиск в линейных структурах
- Последовательный (линейный) поиск
- Бинарный поиск
- Хеширование данных
- Функция хеширования
- Открытое хеширование
- Закрытое хеширование
- Реструктуризация хеш-таблиц
- Поиск по вторичным ключам
- Инвертированные индексы
- Битовые карты
- Использование деревьев в задачах поиска
- Упорядоченные деревья поиска
- Случайные деревья поиска
- Оптимальные деревья поиска
- Сбалансированные по высоте деревья поиска
- Поиск в тексте
- Прямой поиск
- Алгоритм Кнута, Мориса и Пратта
- Алгоритм Боуера и Мура
- Алгоритмы кодирования (сжатия) данных
- Общие сведения
- Метод Хаффмана. Оптимальные префиксные коды
- Кодовые деревья
- Алгоритмы сортировки
- Основные сведения. Внутренняя и внешняя сортировка
- Алгоритмы внутренней сортировки
- Сортировка подсчетом
- Сортировка простым включением
- Сортировка методом Шелла
- Сортировка простым извлечением.
- Древесная сортировка
- Сортировка методом пузырька
- Быстрая сортировка (Хоара)
- Сортировка слиянием
- Сортировка распределением
- Сравнение алгоритмов внутренней сортировки
- Алгоритмы внешней сортировки
- Алгоритмы на графах
- Алгоритм определения циклов
- Алгоритмы обхода графа
- Поиск в глубину
- Поиск в ширину (Волновой алгоритм)
- Нахождение кратчайшего пути
- Алгоритм Дейкстры
- Алгоритм Флойда
- Переборные алгоритмы
- Нахождение минимального остовного дерева
- Алгоритм Прима
- Алгоритм Крускала
- 190000, Санкт-Петербург, ул. Б. Морская, 67