logo search

57. Алгебра логики. Основные законы алгебры логики. Применение алгебры логики в информатике.

Алгеброй логики называется аппарат, который позволяет выполнять действия над высказываниями.

Алгебру логику называют также алгеброй Буля, или булевой алгеброй, по имени английского математика Джорджа Буля, разработавшего в XIX веке ее основные положения. 

Применение алгебры логики в информатике

После изготовления первого компьютера стало ясно, что при его производстве возможно использование только цифровых технологий – ограничение сигналов связи единицей и нулём для большей надёжности и простоты архитектуры компьютера. Благодаря своей бинарной природе, математическая логика получила широкое распространение в вычислительной технике и информатике. Были созданы электронные эквиваленты логических функций, что позволило применять методы упрощения булевых выражений к упрощению электрической схемы. Кроме того, благодаря возможности нахождения исходной функции по таблице позволило сократить время поиска необходимой логической схемы.

В программировании логика незаменима как строгий язык и служит для описания сложных утверждений, значение которых может определить компьютер.

Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, а значений логических переменных тоже два: «1» и «0».

Из этого следует два вывода:

1) одни и те же устройства компьютера могут применяться для обработки и хранения как числовой информации, представленной в двоичной системе счисления, так и логических переменных;

2) на этапе конструирования аппаратных средств алгебра логики позволяет

значительно упростить логические функции, описывающие функционирование схем компьютера, и, следовательно, уменьшить число элементарных логических элементов, из десятков тысяч которых состоят основные узлы компьютера. Данные и команды представляются в виде двоичных последовательностей различной структуры и длины. Существуют различные физические способы кодирования двоичной информации.

В электронных устройствах компьютера двоичные единицы чаще всего кодируются более высоким уровнем напряжения, чем двоичные нули (или наоборот), например: Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И — НЕ, ИЛИ — НЕ и другие (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода. Чтобы представить два логических состояния – «1» и «0» в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт. Высокий уровень обычно соответствует значению «истина» (1), а низкий — значению «ложь»(0).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нём реализована. Это упрощает запись и понимание сложных логических схем. Работу логических элементов описывают с помощью таблиц истинности.

 Булевы  алгебры  находят  применение  главным  образом   в   теории множеств, в математической логике, в теории вероятностей и в  функциональном анализе.

 Итак, алгебра логики применяется: 1) для упрощения сложных логических формул и доказательств тождеств; 2) при решении логических задач; 3) в контактных схемах; 4) при доказательствах теорем; 5) в базах данных при составлении запросов.