logo search
УП_САОД_2003

Быстрая сортировка (Хоара)

Эту сортировку называют быстрой, потому что на практике она оказывается самым быстрым алгоритмом сортировки из тех, что оперируют сравнениями.

Этот алгоритм является ярким примером реализации принципа «разделяй и властвуй». Как показывают теоретические выкладки, наиболее эффективным в общем случае оказывается разделение задачи на две равные по сложности части, что здесь и делается.

На каждом шаге алгоритма сначала выбирается «средний» элемент, затем переставляются элементы массива так, что массив разделился на две части. Первая часть содержит элементы, меньше «среднего» и, возможно, равные ему. Вторая часть содержит элементы больше «среднего» и, возможно, равные ему. После такого деления массива остается только отсортировать его части по отдельности, с которыми поступаем аналогично (делим на две части). И так до тех пор, пока эти части не окажутся состоящими из одного элемента, а массив из одного элемента всегда отсортирован. В случае, когда массив содержит только одинаковые элементы, выбор «среднего» элемента не производится и сортировка не осуществляется.

Разделение массива на две части производится следующим образом. Устанавливаем один курсор на левую границу массива, а второй – на правую границу. Затем осуществляем перемещение курсоров навстречу друг другу до тех пор, пока они не пересекутся. При перемещении курсоров сравниваем значения текущих элементов со «средним». Находим левый текущий элемент, больший «среднего», и правый текущий элемент, меньше «среднего» (то есть, элементы, которые находятся «не на своем месте»). Осуществляем обмен этих элементов.

Выбор «среднего» – задача непростая, так как требуется, не производя сортировку, найти элемент со значением максимально близким к среднему. Здесь, конечно, можно просто выбрать произвольный элемент (обычно выбирают элемент, стоящий в середине сортируемого подмассива), но пойдем чуть дальше: из трех элементов (самого левого, самого правого и стоящего посередине) выберем средний.

procedure HoarSort(n: integer;

var A: array[1..n] of integer);

{Процедура сортировки Хоара}

function FindMedium(L, R: integer): integer;

{Нахождение индекса "среднего" элемента}

var

MedIndex, {индекс "среднего" элемента}

Left, Right, Median: integer;

begin

Left := A[L]; Right := A[R]; Median := A[(L+R) div 2];

{Берем два крайних элемента и один из середины массива}

if (Left = Median) and (Median = Right) then begin

{Если все три элемента одинаковы, то ищем неравный им}

i := L;

while (A[i] = Median) and (i < R) do i := i + 1;

{Если найден неравный элемент, то берем его третьим}

if A[i] <> Median then Median := A[i];

end;

if (Left = Median) and (Median = Right) then begin

{Все элементы массива одинаковы и "средний" не найден}

FindMedium := 0;

end else begin

{Выбираем "средний" из трех разных элементов}

if Left <= Median then

if Median <= Right then

MedIndex := (L+R) div 2

else

if Left <= Right then MedIndex := R

else MedIndex := L

else

if Left >= Right then

MedIndex := (L+R) div 2

else

if Left >= Right then

MedIndex := R

else

MedIndex := L;

FindMedium := MedIndex;

end;

end; {FindMedium}

procedure QuickSort(L, R: integer);

var

MedItem, {значение "среднего" элемента}

MedIndex, {индекс "среднего" элемента}

Tmp, i, j: integer; {вспомогательные переменные}

begin

MedIndex := FindMedium(L, R);

if MedIndex <> 0 then begin

{Сортируем, если найден "средний" элемент}

MedItem := A[MedIndex];

{Разбиваем массив на две части}

i := L; j := R;

while i <= j do begin

{Ищем первый слева элемент, больший, чем MedItem}

while A[i] < MedItem do i := i + 1;

{Ищем первый справа элемент, меньший, чем MedItem}

while A[j] > MedItem do j := j - 1;

if i <= j then begin {Меняем местами найденные элементы}

Tmp := A[i];

A[i] := A[j];

A[j] := Tmp;

i := i + 1;

j := j - 1;

end;

end;

{Сортируем две части массива по отдельности}

if L < j then QuickSort(L, j);

if i < R then QuickSort(i, R);

end;

end; {QuickSort}

begin {HoarSort}

QuickSort(1, n);

end; {HoarSort}

Заметим, что все-таки предложенный способ нахождения «среднего» элемента подмассива в худшем случае приведет к тому, что после деления, например правая часть поделенного массива, будет содержать один элемент, а левая все остальные. В этом случае получается порядка n рекурсивных вызовов. Это значит, что необходимо будет завести дополнительную память размером пропорциональным n и пространственная сложность Vmax(n) будет пропорциональна O(n). В среднем и в лучшем случае, можно говорит о пространственной сложности, пропорциональной O(log n).

Рисунок 46. Быстрая сортировка Хоара

В худшем случае этот алгоритм дает временную сложность Tmax(n), пропорциональную O(n2) (для случая, когда все выборки «среднего» элемента оказались неудачны), но как показывают теоретические исследования, вероятность такого случая очень мала. В среднем же и в лучшем случае получим временную сложность T(n), пропорциональную O(n*log n).