logo search
УП_САОД_2003

Сравнение алгоритмов внутренней сортировки

Выше было рассмотрено достаточно большое количество алгоритмов внутренней сортировки. Возникает вопрос: зачем тогда нужно такое разнообразие алгоритмов сортировок, если есть возможность раз и навсегда определить алгоритм с наилучшим показателем эффективности и оставить «право на жизнь» исключительно за ним? Ответ прост: в реальных задачах имеются ограничения, определяемые как логикой задачи, так и свойствами конкретной вычислительной среды, которые могут существенно влиять на эффективность данной конкретной реализации алгоритма. Поэтому выбор того или иного алгоритма всегда остается за разработчиком программного обеспечения.

Таблица 4 показывает теоретические временные и пространственные сложности рассмотренных методов сортировки.

Таблица 4

Сортировка

Tmax

Tmid

Tmin

Vmax

Подсчетом

O(n2)

O(n)

Включением

O(n2)

O(n)

O(1)

Шелла

O(n2)

O(n1,25)

O(n)

O(1)

Извлечением

O(n2)

O(1)

Древесная

O(n*log n)

O(1)

Пузырьковая

O(n2)

O(n)

O(1)

Быстрая

O(n2)

O(n*log n)

O(log n)

Слиянием

O(n*log n)

O(n)

Распределением

O(n)

O(n)

Эта таблица позволяет сделать ряд выводов.

  1. На небольших наборах данных целесообразнее использовать сортировку включением, так как из всех методов, имеющих очень простую программную реализацию, этот на практике оказывается самым быстрым и при размерностях, меньше ~3000 дает вполне приемлемую для большинства случаев скорость работы. Еще одно преимущество этого метода заключается в том, что он использует полную или частичную упорядоченность входных данных и на упорядоченных данных работает быстрее, а на практике данные, как правило, уже имеют хотя бы частичный порядок.

  2. Алгоритм пузырьковой сортировки, причем в той его модификации, которая не использует частичный порядок данных исходного массива, хотя и часто используется, но имеет плохие показатели даже среди простых методов с квадратичной сложностью.

  3. Сортировка Шелла оказывается лишь красивым теоретическим методом, потому что на практике использовать его нецелесообразно: он сложен в реализации, но не дает такой скорости, какую дают сравнимые с ним по сложности программной реализации методы.

  4. При сортировке больших массивов исходных данных лучше использовать быструю сортировку.

  5. Если же добавляется требование гарантировать приемлемое время работы метода (быстрая сортировка в худшем случае имеет сложность, пропорциональную O(n2), хотя вероятность такого случая очень мала), то надо применять либо древесную сортировку, либо сортировку слиянием. Как видно из таблиц, сортировка слиянием работает быстрее, но следует помнить, что она требует дополнительную память размером порядка n.

  6. В тех же случаях, когда есть возможность использовать дополнительную память размером порядка n, имеет смысл воспользоваться сортировкой распределением.