6.4.4.1. Формирование сетки
Метод конечных элементов основывается на том, что любое непрерывное распределение физической переменной u(x,y,z,t) в расчетной области, например деформацию или температурное поле, можно аппроксимировать набором кусочно-непрерывных функций, определенных на конечном числе подобластей (конечных элементов). Данные элементы имеют общие узловые точки и в совокупности аппроксимируют форму области.
В зависимости от геометрии и размерности задачи используют различные виды конечных элементов (см. рис. 6.7). Чаще всего применяются простейшие элементы - симплексы.
а б в
Рис. 6.7 ‑ Некоторые виды конечных элементов: a - одномерные; б -двухмерные; в - трехмерные
Количество узлов в симплексе на единицу превышает размерность задачи. Для двухмерной задачи симплекс-элементом будет являться прямолинейный трехузловой треугольник, а для трехмерных - прямолинейный четы-рехузловой тетраэдр. Широкое применение симплексов обусловлено тем, что они позволяют заполнять расчетную область произвольной формы полностью без разрывов, а также на них удобно использовать в качестве аппроксимирующих функций линейные полиномы.
Обычно для разбиения расчетной области на элементы используется специальный алгоритм покрытия, обеспечивающий автоматическую генерацию сетки.
Одна из таких процедур работает следующим образом (см. рис. 6.8, а). Вначале производится нанесение с некоторым шагом узлов на границу области. После этого внутри области строится вспомогательная кривая эквидистантная границе. На кривую также наносятся узлы. Поочередное соединение узлов на первом и втором контурах дает симплексы. Далее все операции повторяются до заполнения симплексами всей области.
Известны и другие алгоритмы формирования конечных элементов, например, «картографический», использующий наложение на расчетную область сетки, которая затем адаптируется к границам и неоднородностям геометрии, или методы, основанные на заполнении объекта набором фигур (тел) с использованием свойств симметрии или отражения.
Пример автоматически сгенерированной трехмерной сетки для круглого диска показан на рис. 6.8, б.
- Основы информационных технологий
- Оглавление
- Предисловие
- Современные информационные технологии
- 1.1 История, современное состояние и перспективы развития вычислительной техники
- 1.2 Элементная база, архитектура, сетевая компоновка, производительность
- 1.3 Понятие информации. Классификация и виды информационных технологий
- Основные свойства информационных технологий.
- 1 .4 Операционные системы
- 2 Основные программные средства информационных технологий
- 2.1. Программное обеспечение. Текстовые редакторы, их возможности и назначение
- 2.2. Графические редакторы
- 2.3. Электронные таблицы
- 2.4. Сервисные инструментальные программные средства
- 2.5. Системы математических вычислений MatLab
- 2.6 Система подготовки презентаций
- 3 Сетевые технологии и интернет
- 3.1 Классификация компьютерных сетей
- 3.2 Семиуровневая модель структуры протоколов связи
- 2.3. Взаимодействие компьютеров в сети
- 3.3 Организационная структура Internet
- 3.4 Инструментальные средства создания web-сайтов. Основы web-дизайна
- 3.5 Языки разметки гипертекста html и xml
- 3.6 Скриптовые языки программирования
- 4 Системы управления базами данных
- 4.1. Классификация систем управления базами данных
- 4.2 Модели данных
- 4.3 Моделирование баз данных
- 4.4 Архитектура и функциональные возможности субд. Языковые и программные средства субд
- 4.5 Общая характеристика субд ms Access
- 4.6 Основные объекты ms Access
- 4.7 Основы языка sql
- Контрольные вопросы
- 5 Защита информации при использовании информационных технологий
- 5.1 Основы информационной безопасности
- 5.2. Методы и средства защиты информации
- 5.3 Защита от несанкционированного доступа к данным
- 5.4 Классы безопасности компьютерных систем
- 5.5 Основные аспекты построения системы информационной безопасности
- 6 Математическое моделирование и численные методы
- 6.1 Математические модели и численные методы решения задач в различных предметных областях
- 6.2 Численное дифференцирование и интегрирование
- 6.2.1 Особенность задачи численного дифференцирования
- 6.2.2 Интерполяционная формула Лагранжа для равноотстоящих узлов
- 6.2.3 Численное дифференцирование на основе интерполяционной формулы Лагранжа
- 6.2.4 Численное дифференцирование на основе интерполяционной формулы Ньютона
- 6.2.5 Постановка задачи численного интегрирования
- 6.2.6 Квадратурные формулы Ньютона-Котеса
- 6.2.7 Формула трапеций
- 6.2.8 Формула Симпсона
- 6.2.9 Оценка точности квадратурных формул
- 6.3 Методы решения обыкновенных дифференциальных уравнений
- 6.3.1 Задача Коши и краевая задача
- 6.3.1.1 Классификация уравнений
- 6.3.1.2 Задача Коши
- 6.3.2 Одношаговые методы решения задачи Коши
- 6.3.2.1 Метод Эйлера
- 6.3.2.2 Модифицированный метод Эйлера
- 6.3.2.3 Метод Рунге-Кутта четвертого порядка
- 6.3.2.4 Погрешность решения и выбор шага
- 6.3.3 Многошаговые методы решения задачи Коши
- 6.3.3.1 Многошаговые методы
- 6.3.3.2 Метод Адамса
- 6.3.3.3 Методы прогноза и коррекции (предиктор-корректор)
- 6.3.3.4 Общая характеристика многошаговых методов
- 6.3.4 Краевая задача и метод стрельбы
- 6.3.4.1 Краевая задача
- 6.3.4.2 Метод стрельбы
- 6.3.4.3 Метод стрельбы для линейного дифференциального уравнения
- 6.4 Решение дифференциальных уравнений в чстных производных
- 6.4.1 Краткие теоретические сведения
- 6.4.2 Классификация уравнений по математической форме
- 6.4.3 Основы метода конечных разностей
- 6.4.3.1 Построение сетки
- 6.4.3.2 Аппроксимация уравнения эллиптического типа
- 6.4.3.3 Аппроксимация уравнения гиперболического типа
- 6.4.3.4 Аппроксимация уравнения параболического типа
- 6.4.3.5 Погрешность решения
- 6.4.4 Основы метода конечных элементов
- 6.4.4.1. Формирование сетки
- 6.4.4.2 Конечно-элементная аппроксимация
- 6.4.4.3 Построение решения
- 6.6 Элементы математической статистики
- 6.6.1 Генеральная совокупность. Выборка. Статистические ряды
- 6.6.2 Графическое изображение вариационных рядов. Эмпирическое распределение
- 6.6.3 Средние величины и показатели вариации
- 6.6.4 Средняя арифметическая и ее свойства
- 6.6.5 Дисперсия и ее свойства. Среднее квадратическое отклонение
- 6.6.6 Коэффициент вариации
- 6.6.7 Структурные средние
- 6.6.8 Законы распределения случайных величин
- 6.6.9 Статистические гипотезы
- 7 Методы оптимизации и системы поддержки принятия решений
- 7.1 Характеристика методов решения задач оптимизации
- 7.1.1 Численные методы безусловной оптимизации нулевого порядка
- 7.1.1.1 Основные определения
- 7.1.1.2 Классификация методов
- 7.1.1.3 Общая характеристика методов нулевого порядка
- 7.1.1.4 Метод прямого поиска (метод Хука-Дживса)
- 7.1.1.5 Метод деформируемого многогранника (метод Нелдера—Мида)
- 7.1.1.6 Метод вращающихся координат (метод Розенброка)
- 7.1.1.7 Метод параллельных касательных (метод Пауэлла)
- 7.1.2 Численные методы безусловной оптимизации первого порядка
- 7.1.2.1 Минимизация функций многих переменных. Основные положения
- 7.1.2.2 Метод наискорейшего спуска
- 7.1.2.3 Метод сопряженных градиентов
- 7.1.3 Численные методы безусловной оптимизации второго порядка
- 7.1.3.1 Особенности методов второго порядка
- 7.1.3.2 Метод Ньютона
- 7.2 Линейное программирование
- 7.2.1 Транспортная задача линейного программирования
- 7.2.1.1 Постановка задачи
- 7.2.1.2 Венгерский метод
- 7.2.1.3 Метод потенциалов
- 7.3 Прямые методы условной оптимизации
- 7.3.1 Основные определения
- 7.3.2 Метод проекции градиента
- 7.3.3 Комплексный метод Бокса
- 7.4 Методы штрафных функций
- 7.4.1 Основные определения
- 7.4.2 Методы внутренних штрафных функций
- 7.4.3 Методы внешних штрафных функций
- 7.4.4 Комбинированные алгоритмы штрафных функций
- 7.5 Информационные технологии поддержки принятия решений
- 7.6 Информационные технологии экспертных систем Характеристика и назначение
- Список литературы