Детерминированная и вероятностная нейродинамика.
На предыдущей лекции была рассмотрена классическая модель Хопфилда с двоичными нейронами. Изменение состояний нейронов во времени описывалось детерминированными правилами, которые в заданный момент времени однозначно определяли степень возбуждения всех нейронов сети.
Эволюция в пространстве состояний сети Хопфилда завершается в стационарной точке - локальном минимуме энергии. В этом состоянии любые изменения активности любого нейрона запрещены, так как они приводят к увеличению энергии сети. Если продолжать проводить аналогию между классической нейродинамикой и статистическими (динамическими) системами в физике, то можно ввести понятие температурыстатистичекого ансамбля нейронов. Поведение сети Хопфилда соответствует нулевой температуре (полному замерзанию) статсистемы.
При строго нулевой температуре (T=0) статистический Больцмановский фактор exp(-E/T) делает невозможным увеличение энергии. Переход к ненулевым температурам (T>0) значительно обогащает динамику системы, которая теперь может с ненулевой вероятностью делать переходы с возрастанием E и посещать новые статистические состояния.
Вернемся к нейронным сетям. Для некоторого нейрона возможность перехода в состояние с большей энергией означает отказ от следования детерминированному закону изменения состояний. При ненулевых температурах состояние нейрона определяется вероятностным образом:
Si(t+1) = sign( hi(t)-), с вероятностью Pi
Si(t+1) = - sign( hi(t)-), с вероятностью (1-Pi)
Вероятность перехода в состояние с возрастанием энергии тем меньше, чем больше разница в энергиях конечного E2и начального E1состояний. В статистических системах эта вероятность определяется формулой Больцмана:
Нетрудно заметить, что в пределе низких температур (T0) вероятность P стремится к единице, и динамика переходит в обычную детерминированную нейродинамику.
При высоких температурах (T >> E) вероятность P=1/2, т.е. изменение состояния нейрона никак не связано ни с его предыдущим состоянием, ни со значением “нейронного поля” h(t). Состояния сети меняются полностью хаотично, и ситуация ничем не напоминает систему с памятью.
Динамика нейронной системы при ненулевых температурах уже не является Ляпуновской, так как энергия сети не обязана теперь уменьшаться со временем. При этом, вообще говоря, полной стабилизации состояния сети не происходит - состояние быдет продолжать испытывать изменения, при которых ET.
Если теперь постепенно уменьшать температуру сети, большое увеличение энергии становится все менее вероятным, и система замерзает в окрестности минимума. Очень важно отметить, что замерзание с большой вероятностью будет происходить в чаше самого глубокого и широкого минимума, т.е. сеть преимущественно достигает глобальногоминимума энергии.
Процесс медленного остывания и локализации состояния в области низких энергий аналогичен процессу отжига металлов, применяемому в промышленности для их закалки, поэтому он получил название имитации отжига.
Введение отличной от нуля температуры в динамику нейросети улучшает свойства памяти, так как система перестает “чувствовать” мелкие локальные минимумы, отвечающие ложным образам. Однако за это приходится платить неточностями при воспроизведении образов вследствие отсутствия полной стабилизации системы в точке минимума.
- Лекция 3. Биологический нейрон и его кибернетическая модель.
- Метод нейробиологии.
- Биологический нейрон.
- Нейронные сети.
- Биологическая изменчивость и обучение нейронных сетей.
- Формальный нейрон.
- Обучение нейрона детектированию границы "черное-белое"
- Лекция 4. Персептрон Розенблатта.
- Персептрон Розенблатта.
- Теорема об обучении персептрона.
- Линейная разделимость и персептронная представляемость
- Лекция 5. Свойства процессов обучения в нейронных сетях.
- Задача обучения нейронной сети на примерах.
- Классификация и категоризация.
- Обучение нейронной сети с учителем, как задача многофакторной оптимизации. Понятие о задаче оптимизации.
- Постановка задачи оптимизации при обучении нейронной сети
- Лекция 6. Многослойный персептрон.
- Необходимость иерархической организации нейросетевых архитектур.
- Многослойный персептрон.
- Обучение методом обратного распространения ошибок.
- Лекция 7. Другие иерархические архитектуры.
- Звезды Гроссберга
- Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- Карта самоорганизации Кохонена.
- Нейронная сеть встречного распространения.
- Лекция 8. Модель Хопфилда.
- Сети с обратными связями
- Нейродинамика в модели Хопфилда
- Правило обучения Хебба
- Ассоциативность памяти и задача распознавания образов
- Лекция 9. Обобщения и применения модели Хопфилда.
- Модификации правила Хебба.
- Матрица Хебба с ортогонализацией образов.
- Отказ от симметрии синапсов.
- Алгоритмы разобучения (забывания).
- Двунаправленная ассоциативная память.
- Детерминированная и вероятностная нейродинамика.
- Применения сети Хопфилда к задачам комбинаторной оптимизации.
- Лекция 10. Неокогнитрон Фукушимы.
- Когнитрон: самоорганизующаяся многослойная нейросеть.
- Неокогнитрон и инвариантное распознавание образов.
- Лекция 11. Теория адаптивного резонанса.
- Дилемма стабильности-пластичности восприятия.
- Принцип адаптивного резонанса.
- Нейронная сеть aрt-1.
- Начальное состояние сети.
- Фаза сравнения.
- Фаза поиска.
- Обучение сети арт.
- Теоремы арт.
- Дальнейшее развитие арт: архитектуры арт-2 и арт-3. Нерешенные проблемы и недостатки арт-1.
- Сети арт-2 и арт-3.
- Лекция 12. Черты современных архитектур.
- Черты современных архитектур.
- Сегодняшний день нейронауки.
- Программное и аппаратное обеспечение. Нейро-эвм.