logo
Сергей А

Алгоритмы разобучения (забывания).

Возможность забывания ненужной, лишней информации является одним из замечательных свойств биологической памяти. Идея приложения этого свойства к искусственной нейросети Хопфилда “удивительно” проста: при запоминании образов обучающей выборки вместе с ними запоминаются и ложные образы. Их-то и следует “забыть”.

Соотвествующие алгоритмы получили название алгоритмов разобучения. Суть их сводится к следующему.

На первой фазе происходит обучение сети по стандартному правилу Хебба. Память наполняется истинными образами и множеством ложной информации. На следующей фазе (фазе разобучения) сети пред’является некоторый (случайный) образ (0). Сеть эволюционирует от состояния(0)к некоторому состоянию(f), которое при большом об’еме обучающей выборки чаще всего оказывается ложным. Теперь матрица связей может быть поправлена, с целью уменьшить глубину минимума энергии, отвечающего этому ложному состоянию:

В качестве степени забывания выбирается некоторое малое число, что гарантирует незначительное ухудшение полезной памяти, если состояние(f)не окажется ложным. После нескольких “сеансов забывания” свойства сети улучшаются (J.J.Hopfield et al, 1983).

Данная процедура далека от формального теоретического обоснования, однако на практике приводит к более регулярной энергетической поверхности нейронной сети и к увеличению об’ема бассейнов притяжения полезных образов.